Modelling And Simulation Of A New Dual Porosity CBM Reservoir Model With An Improved Permeability Model Through Horizontal Wells

Author(s):  
Shi-yi Zheng ◽  
Xue Lili
Fuel ◽  
2021 ◽  
Vol 295 ◽  
pp. 120610
Author(s):  
Yafei Luo ◽  
Binwei Xia ◽  
Honglian Li ◽  
Huarui Hu ◽  
Mingyang Wu ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3981
Author(s):  
Peng Li ◽  
Yanyu Zhang ◽  
Xiaofei Sun ◽  
Huijuan Chen ◽  
Yang Liu

Non-uniformity of the steam-assisted gravity drainage (SAGD) steam chamber significantly decreases the development of heavy oil reservoirs. In this study, to investigate the steam conformance in SAGD operations, a wellbore model is developed for fluid flow in dual-string horizontal wells. Then, a three-dimensional, three-phase reservoir model is presented. Next, the coupled wellbore and reservoir model is solved with a fully implicit finite difference method. Finally, the effects of the injector wellbore configuration, steam injection ratio and injection time on the steam conformance are investigated. The results indicate that under different injector wellbore configurations, the closer the differences between the pressure drop from the landing position of the short string to the heel of the wellbore and the pressure drop from the landing position of the short string to the toe of the wellbore, the better is the steam conformance. The smaller the difference in the steam injection rate between the long and short injection strings, the higher is the uniformity of the steam chamber. The injector annular pressure profile uniformity is consistent with the steam conformance. Creating a more uniform steam pressure in the annulus of the injector improves the uniformity of the steam chamber. The steam conformance decreases with increasing injection time, so the optimization method of steam chamber uniformity should be adjusted according to different injection times.


2015 ◽  
Vol 18 (04) ◽  
pp. 523-533 ◽  
Author(s):  
Shuhua Wang ◽  
Mingxu Ma ◽  
Wei Ding ◽  
Menglu Lin ◽  
Shengnan Chen

Summary Pressure-transient analysis in dual-porosity media is commonly studied by assuming a constant reservoir permeability. Such an assumption can result in significant errors when estimating pressure behavior and production rate of naturally fractured reservoirs as fracture permeability decreases during the production. At present, there is still a lack of analytical pressure-transient studies in naturally fractured reservoirs while taking stress-sensitive fracture permeability into account. In this study, an approximate analytical model is proposed to investigate the pressure behavior and production rate in the naturally fractured reservoirs. This model assumes that fracture permeability is a function of both permeability modulus and pressure difference. The pressure-dependent fracture system is coupled with matrix system with an unsteady-state exchange flow rate. A nonlinear diffusivity equation in fracture system is developed and solved by Pedrosa's transformation and a perturbation technique with zero-order approximation. A total of six solutions in the Laplace space are presented for two inner-boundary conditions and three outer-boundary conditions. Finally, pressure behavior and production rate are studied for both infinite and finite reservoirs. Pressure behavior and production rate from the models with and without stress-sensitive permeability are compared. It is found that, for an infinite reservoir with a constant-flow-rate boundary condition, if permeability modulus is 0.1, dimensionless pressure difference at the well bottom from the model with fracture-permeability sensitivity is 80% higher than that of the constant fracture-permeability model at a dimensionless time of 106. Such difference can be as high as 216% if permeability modulus increases to 0.15. On the contrary, for the infinite reservoirs with a constant-pressure boundary, the constant fracture-permeability model tends to overestimate the flow rate at wellbore and cumulative production. The proposed model not only provides an analytical and quantitative method to investigate the effects of fracture-permeability sensitivity on reservoir-pressure distribution and production, but it also can be applied to build up analysis of well test data from stress-sensitive formations.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hong Li ◽  
Haiyang Yu ◽  
Nai Cao ◽  
Shiqing Cheng ◽  
He Tian ◽  
...  

A simulated reservoir model, based on the permeability fractal model and three-dimensional (3D) Gaussian filter, was established to account for in-layer and interlayer heterogeneity so that the result conforms to the law of geological statistics. Combined with an embedded discrete fracture method (EDFM), a multiscale fracture system was established, forming the numerical simulation method of multiphase flow in horizontal wells in heterogeneous reservoirs with complex fractures. The heterogeneity and saturation of the reservoir mixed five-point pattern of vertical and horizontal wells and the injection and production of horizontal wells were discussed. The results show that it is difficult to characterize complex reservoirs using a homogeneous permeability model. Thus, it is best to use a heterogeneous model that considers permeability differences in tight reservoirs. Formation fluids coexist in multiple phases, and water saturation has a direct effect on the production. Thus, a multiphase flow model is needed and can play a greater role in injection and production technology. The mixed five-point pattern of vertical and horizontal wells can improve productivity to a certain extent, but the dual effects of heterogeneity and fracturing will cause a decline in production by accelerating the communication of injected fluid. The reservoir is heterogeneous between wells, and there are differing effects on adjacent wells. Therefore, near-well natural microfractures are opened because of fracturing in horizontal wells, and the heterogeneity cannot be ignored, especially when multiple wells are simultaneously injected and produced.


2005 ◽  
Vol 127 (3) ◽  
pp. 248-256 ◽  
Author(s):  
Hossein Jahediesfanjani ◽  
Faruk Civan

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water, and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and stimulation approach. A new comparison parameter, named as the normalized productivity index Jnp(t) is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on Jnp(t) over the production time. The results for each stimulation technique show that the value of Jnp(t) declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Long horizontal fractures improve reservoir productivity more than short vertical ones. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease. Finally, pressure distribution of the reservoir under each scenario is strongly dependent upon the reservoir characteristics, including the hydraulic diffusivity of methane, and the porosity and permeability distributions in the reservoir.


Sign in / Sign up

Export Citation Format

Share Document