Liquid slug holdup in horizontal and slightly inclined two-phase slug flow

2000 ◽  
Vol 27 (1-2) ◽  
pp. 27-32 ◽  
Author(s):  
Ghassan H Abdul-Majeed
Keyword(s):  
Author(s):  
A. Mehdizadeh ◽  
S. A. Sherif ◽  
W. E. Lear

In this paper the Navier-stokes equations for a single liquid slug have been solved in order to predict the circulation patterns within the slug. Surface tension effects on the air-water interface have been investigated by solving the Young–Laplace equation. The calculated interface shape has been utilized to define the liquid slug geometry at the front and tail interfaces of the slug. Then the effects of the surface tension on the hydrodynamics of the two-phase slug flow have been compared to those where no surface tension forces exist. The importance of the complex flow field features in the vicinity of the two interfaces has been investigated by defining a non-dimensional form of the wall shear stress. The latter quantity has been formulated based on non-dimensional parameters in order to define a general Moody friction factor for typical two-phase slug flows in microchannels. Moreover, the hydrodynamics of slug flow formation has been examined using computational fluid dynamics (CFD). The volume-of-fluid (VOF) method has been applied to monitor the growth of the instability at the air-water interface. The lengths of the slugs have been correlated to the pressure fluctuations in the mixing region of the air and water streams at an axisymmetric T-junction. The main frequencies of the pressure fluctuations have been investigated using the Fast Fourier Transform (FFT) method.


2018 ◽  
Vol 191 ◽  
pp. 398-409 ◽  
Author(s):  
Agnieszka Ładosz ◽  
Philipp Rudolf von Rohr

Author(s):  
M. R. Myers ◽  
H. M. Cave ◽  
S. P. Krumdieck

Two-phase intermittent gas and liquid slug flow in small diameter glass and plastic tubes was studied. Two distinct flow regimes and the transition phenomena were identified. A modified Hagen-Poiseuille relation was derived to describe the extremely high pressure drop due to the surface tension effects of pinned slug flow.


Author(s):  
Weizhong Zhang ◽  
Hiroyuki Yoshida ◽  
Kazuyuki Takase

An approximate model is presented which permits the prediction in detail of the unsteady differential pressure fluctuation behavior between subchannels in the nuclear reactor core. The instantaneous fluctuation of differential pressure between two subchannels in gas-liquid slug flow regime is deemed as a result of the intermittent nature slug flow in each subchannel. The model is based on the detailed numerical simulation result of two-phase flow that pressure drop occurs mainly in liquid slug region and in the bubble region it is negligibly small. The instantaneous fluctuation of differential pressure between the two subchannels is associated with pressure gradient in the liquid slug for each channel. In addition to a hydrostatic gradient, acceleration and frictional gradients are taken into account to predict pressure gradient in the liquid slug. This model temporarily used in conjunction with the numerical simulation code works satisfactorily to reproduce numerical simulation results for instantaneous fluctuation of differential pressure between two modeled subchannels.


Author(s):  
Mirco Magnini ◽  
John R. Thome

This work presents a new boiling heat transfer prediction method for slug flow within microchannels, which is developed and benchmarked against the results of two-phase CFD simulations. The proposed method adopts a two-zone decomposition of the flow for the sequential passage of a liquid slug and an evaporating elongated bubble. The heat transfer is modeled by assuming transient heat conduction across the liquid film surrounding an elongated bubble and sequential conduction/convection within the liquid slug. Embedded submodels for estimating important flow parameters, e.g. bubble velocity and liquid film thickness, are implemented as “building blocks”, thus making the entire modeling framework totally stand-alone. The CFD simulations are performed by utilizing ANSYS Fluent v. 14.5 and the interface between the vapor and liquid phases is captured by the built-in Volume Of Fluid algorithm. Improved schemes to compute the surface tension force and the phase change due to evaporation are implemented by means of self-developed functions. The comparison with the CFD results shows that the proposed method emulates well the bubble dynamics during evaporation, and predicts accurately the time-averaged heat transfer coefficients during the initial transient regime and the terminal steady-periodic stages of the flow.


2015 ◽  
Author(s):  
Rafael Fabricio Alves ◽  
Andressa Carolinne Del Monego ◽  
Cristiane Cozin ◽  
Fausto Arinos de Almeida Barbuto ◽  
Fábio Alencar Schneider ◽  
...  

1985 ◽  
Vol 25 (01) ◽  
pp. 27-38 ◽  
Author(s):  
Zelimir Schmidt ◽  
Dale R. Doty ◽  
Kunal Dutta-Roy

Abstract Severe slug flow (i.e., terrain-dominated slug flow) was studied in a simulated offshore pipeline riser-pipe system. Severe slug flow is characterized by extremely long liquid slugs generated at the base of the vertical riser. This phenomenon occurs at low gas and liquid flow rates and for negative pipeline inclinations. Slugging in some offshore platforms has required the use of operating procedures that drastically curtail production. Losses in flow capacity up to 50% have been reported. production. Losses in flow capacity up to 50% have been reported. A hydrodynamic model has been developed for severe slug flow. The model's predictions agree with experimental data. The model can be used to design predictions agree with experimental data. The model can be used to design new pipeline riser-pipe systems or to adjust the operation of existing systems to prevent the occurrence of severe slug flow. Also, a flow-regime map is presented for predicting the severe slug flow regime, where the boundaries are determined analytically. Finally, additional methods are proposed to prevent the flooding of separation facilities by riser-pipe proposed to prevent the flooding of separation facilities by riser-pipe generated slugs. This study is an extension of Ref. 1, in which severe slug flow was introduced and was only partially modeled. Introduction Two-phase flow in pipelines frequently involves the formation of liquid slugs. Processing of these slugs with separators can be extremely difficult if the size of the slugs becomes abnormally long. When a long liquid slug reaches a separator, it is possible for the liquid level in the separator to rise faster than the separator can purge the liquid, resulting in possible liquid carry-over into the gas stream. A technique often used for possible liquid carry-over into the gas stream. A technique often used for protecting separators from liquid slugs is to install an additional vessel protecting separators from liquid slugs is to install an additional vessel ahead of the separator, which usually is called a "slug catcher." The combined cost of the two smaller vessels is usually lower than the cost of a single large separator, which must be designed to process liquid slugs. However, the size of the slug catcher and/or separator must increase with increasing expected liquid slug sizes. The cost of installation of large separators and slug catchers, especially in the hostile environments found in Alaska, in swamps, or on offshore platforms, may be prohibitive. Therefore, it is desirable to have a technique that can predict and control both the occurrence and magnitude of liquid slugs so that separation facilities can be designed properly and their size decreased. Recently, studies have been performed that have increased dramatically the accuracy of both slug size and frequency predictions. Earlier studies, performed under laboratory conditions, indicated that slug lengths would performed under laboratory conditions, indicated that slug lengths would be no more than 100 ft [30.48 m]. However, recent studies performed on full-scale pipelines have indicated that slug lengths of more than 2,000 ft [609.6 m] are possible. In addition, it has been discovered that slug flow can be generated by several different mechanisms, each producing liquid slugs with different physical properties. Schmidt et al., in studying slug flow in a simulated offshore pipeline riser-pipe system, found two distinct slug flow patterns: normal (e.g., hydrodynamic) and severe (e.g., terrain-dominated) slug flow. Severe slug flow is characterized by the generation of liquid slugs at the base of the riser pipe, with the remainder of the pipeline in stratified flow. Normal slug flow is characterized by many liquid slugs being generated along the length of the pipeline and occurs at higher gas and liquid flow rates. The liquid slugs generated during severe slug flow were found to range in length from one to several riser-pipe heights, which, at the time this study was performed, generally exceeded the slug lengths associated with normal slug flow. Therefore, riser-pipe-generated slug flow was designated "severe" slug flow, in comparison to "normal" pipeline-generated slug flow. Severe slug flow was found to depend on the geometry of the pipeline riser-pipe system. The pipeline must be in stratified flow, as well as inclined negatively for the liquid slug to be generated at the base of the riser. Also, because of the mechanism by which severe slugs are generated, it was found that the degree of slug aeration for severe slugs was much lower than that associated with normal slug flow. Also, the study showed that the phenomena of severe and normal slug flow are mutually exclusive because normal pipeline slugs and bubbles will flow through the riser pipe nearly unchanged, excluding the possibility of a riser-generated slug. Finally, a hydrodynamic model was developed for severe slug flow. The model was formulated on basic physical principles and was limited to a description of how the liquid slug is generated at the base of the riser pipe. No attempt was made to model the full behavior of the severe slug pipe. No attempt was made to model the full behavior of the severe slug flow cycle. Bendiksen et al. developed a dynamic one-dimensional two-phase flow model for the Norwegian state oil company, Statoil. They gave the mass and momentum conservation equations for each phase, and solved them numerically by using finite difference techniques. SPEJ P. 27


Author(s):  
Weizhong Zhang ◽  
Hiroyuki Yoshida ◽  
Kazuyuki Takase

In relation to the thermal-hydraulic design of an innovative Flexible-fuel-cycle Water Reactor (FLWR), this study investigates inter-subchannel cross flow phenomena in a tight-lattice rod bundle. Numerical simulations of cross flow using advance interface tracking method were performed and the results were analyzed by a statistical method to clarify the characteristics of inter-subchannel two phase cross flow in the FLWR reactor core. It was revealed that strong correlation exists between differential pressure and gas/liquid mixing coefficients, and cross flow results mechanistically from differential pressure between subchannels. An approximate model is presented which permits the prediction in detail of the components of the inter-subchannel fluctuation differential pressure. The instantaneous fluctuation of differential pressure between two subchannels in gas-liquid slug flow regime is deemed as a result of the intermittent nature of slug flow in each subchannel. The model is based on the detailed numerical simulation results that pressure drop occurs mainly in liquid slug region and in the bubble region it is negligibly small. The instantaneous fluctuation of differential pressure is associated with pressure gradient in the liquid slug for each channel. In addition to a hydrostatic gradient, acceleration and frictional gradients are taken into account to predict pressure gradient in the liquid slug. This model used in conjunction with the numerical simulation code works satisfactorily to reproduce numerical simulation results for instantaneous fluctuation of differential pressure between two modeled subchannels.


Sign in / Sign up

Export Citation Format

Share Document