1539 Cutaneous reflex modulation during fictive locomotion in the cat forelimb

1993 ◽  
Vol 18 ◽  
pp. S168
Author(s):  
Kazuhiko Seki ◽  
Takashi Yamaguchi
2001 ◽  
Vol 86 (1) ◽  
pp. 447-462 ◽  
Author(s):  
R. E. Burke ◽  
A. M. Degtyarenko ◽  
E. S. Simon

We have examined the linkage between patterns of activity in several hindlimb motor pools and the modulation of oligosynaptic cutaneous reflex pathways during fictive locomotion in decerebrate unanesthetized cats to assess the notion that such linkages can shed light on the structure of the central pattern generator (CPG) for locomotion. We have concentrated attention on the cutaneous reflex pathways that project to the flexor digitorum longus (FDL) motor pool because of that muscle's unique variable behavior during normal and fictive locomotion in the cat. Differential locomotor control of last-order excitatory interneurons in pathways from low-threshold cutaneous afferents in the superficial peroneal and medial plantar afferents to FDL motoneurons is fully documented for the first time. The qualitative patterns of differential control are shown to remain the same whether the FDL muscle is active in early flexion, as usually found, or during the extension phase of fictive locomotion, which is less common during fictive stepping. The patterns of motor pool activity and of reflex pathway modulation indicate that the flexion phase of fictive locomotion has distinct early versus late components. Observations during “normal” and unusual patterns of fictive stepping suggest that some aspects of locomotor pattern formation can be separated from rhythm generation, implying that these two CPG functions may be embodied, at least in part, in distinct neural organizations. The results are discussed in relation to a provisional circuit diagram that could explain the experimental findings.


1997 ◽  
Vol 753 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Kazuhiko Seki ◽  
Takashi Yamaguchi

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Taryn Klarner ◽  
Trevor S. Barss ◽  
Yao Sun ◽  
Chelsea Kaupp ◽  
Pamela M. Loadman ◽  
...  

Rhythmic arm and leg (A&L) movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months) participants were recruited and performed 30 minutes of A&L cycling training three times a week for five weeks. Changes in walking function were assessed with (1) clinical tests; (2) strength during isometric contractions; and (3) treadmill walking performance and cutaneous reflex modulation. A multiple baseline (3 pretests) within-subject control design was used. Data show that A&L cycling training improved clinical walking status increased strength by ~25%, improved modulation of muscle activity by ~25%, increased range of motion by ~20%, decreased stride duration, increased frequency, and improved modulation of cutaneous reflexes during treadmill walking. On most variables, the majority of participants showed a significant improvement in walking ability. These results suggest that exploiting arm and leg connections with A&L cycling training, an accessible and cost-effective training modality, could be used to improve walking ability after stroke.


1978 ◽  
Vol 149 (2) ◽  
pp. 503-507 ◽  
Author(s):  
O. Andersson ◽  
H. Forssberg ◽  
S. Grillner ◽  
M. Lindquist

1998 ◽  
Vol 79 (1) ◽  
pp. 447-463 ◽  
Author(s):  
A. M. Degtyarenko ◽  
E. S. Simon ◽  
T. Norden-Krichmar ◽  
R. E. Burke

Degtyarenko, A. M., E. S. Simon, T. Norden-Krichmar, and R. E. Burke. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat. J. Neurophysiol. 79: 447–463, 1998. We have compared state-dependent transmission through oligosynaptic (minimally disynaptic) reflex pathways from low-threshold cutaneous and muscle afferents to some flexor and extensor lumbosacral motoneurons during fictive locomotion and scratching in decerebrate unanesthetized cats. As reported in earlier work, oligosynaptic cutaneous excitatory postsynaptic potentials (EPSPs) in flexor digitorum longus (FDL) and inhibitory postsynaptic potentials (IPSPs) in extensor digitorum (EDL) longus motoneurons were enhanced markedly during the early flexion phase of fictive locomotion. We show in this paper that, in contrast, these cutaneous reflex pathways were depressed markedly during all phases of fictive scratching. On the other hand, disynaptic EPSPs produced by homonymous and synergist group I muscle afferents in flexor (tibialis anterior and EDL) motoneurons were present and strongly modulated during both fictive locomotion and scratching. During both actions, these disynaptic group I EPSPs appeared or exhibited the largest amplitude when the motoneuron membrane potential was most depolarized and the parent motor pool was active. There was an interesting exception to the simple pattern of coincident group I EPSP enhancement and motoneuron depolarization. During locomotion, disynaptic group I EPSPs in both FDL and flexor hallucis longus (FHL) motoneurons cells were facilitated during the extension phase, although FDL motoneurons were relatively hyperpolarized whereas FHL cells were depolarized. The reverse situation was found during fictive scratching; group I EPSPs were facilitated in both FDL and FHL cells during the flexion phase when FDL motoneurons were depolarized and FHL cells were relatively hyperpolarized. These observations suggest that the disynaptic EPSPs in these two motor nuclei are produced by common interneurons. Reciprocal disynaptic inhibitory pathways from group Ia muscle afferents to antagonist motoneurons were also active and subject to phase-dependent modulation during both fictive locomotion and scratching. In all but one cell tested, reciprocal disynaptic group Ia IPSPs were largest during those phases in which the motoneuron membrane potential was relatively hyperpolarized and the parent motor pool was inactive. Oligosynaptic PSPs in motoneurons produced by stimulation of the mesencephalic locomotor region (MLR) were modulated strongly during fictive locomotion but were suppressed powerfully throughout fictive scratching. Large cord dorsum potentials generated by MLR stimuli also were suppressed markedly during fictive scratching. These results allow certain inferences about the organization of interneurons in the pathways examined. They also suggest that the central pattern generators that produce fictive locomotion and scratching are organized differently.


1996 ◽  
Vol 76 (5) ◽  
pp. 2972-2985 ◽  
Author(s):  
A. M. Degtyarenko ◽  
E. S. Simon ◽  
R. E. Burke

1. Intracellular recording from extensor digitorum longus (EDL) and tibialis anterior (TA) alpha-motoneurons during fictive locomotion was used to examine patterns of modulation of oligosynaptic postsynaptic potentials (PSPs) produced by electrical stimulation of the cutaneous superficial peroneal (SP) and medial plantar (MPL) nerves in unanesthetized, decerebrate adult cats. 2. In all 20 EDL motoneurons studied, electrical stimulation of the SP nerve with single pulses at about twice threshold for the most excitable fibers in the nerve (2xT) produced either no synaptic potentials or relatively small oligosynaptic excitatory or inhibitory PSPs (EPSPs or IPSPs), both at rest and during the extension phase of fictive stepping. However, at the onset of the flexion phase large, presumably disynaptic IPSPs (central latencies 1.7–2.0 ms) appeared in the SP responses. These IPSPs usually decreased in amplitude later in the flexion phase despite maintained membrane depolarization. 3. In most (7/8) TA motoneurons, SP stimulation produced oligosynaptic EPSPs at rest and during the extension phase of fictive stepping. These EPSPs were suppressed during flexion in a majority of TA cells studied (5/8) but no clearly disynaptic IPSPs were found in any TA motoneuron. 4. In most EDL and TA motoneurons, stimulation of the MPL nerve produced oligosynaptic EPSPs at rest and during the extension phase, most with latencies in the presumably disynaptic range (< or = 2.0 ms). When present, these MPL EPSPs were suppressed throughout the flexion phase of stepping in almost all EDL (18/ 20) and TA (6/8) motoneurons examined. 5. The available evidence suggests that these modulation effects during fictive stepping are due primarily to convergence of control information from the spinal central pattern generator (CPG) for locomotion onto segmental interneurons in the oligosynaptic cutaneous pathways. 6. These observations extend the evidence for precise differential control of transmission through cutaneous reflex pathways in the cat hindlimb by the locomotor CPG. Taken together with earlier evidence about locomotor modulation of cutaneous PSPs in flexor digitorum longus (FDL) motoneurons, the data suggest that cutaneous information from the dorsal surface of the foot, carried in part by the SP nerve, projects to digit motoneurons (FDL and EDL) through discrete sets of last-order interneurons that also receive powerful excitation from the locomotor CPG during flexion. In contrast, the last-order interneurons that convey excitatory information from the SP nerve to at least some TA motoneurons are inhibited by the CPG during flexion. 7. Another contrast resides in the fact that oligosynaptic cutaneous excitation from the plantar surface of the foot, via the MPL nerve, is suppressed in FDL, EDL, and TA motoneurons during the flexion phase of locomotion. The available information is consistent with the possibility that MPL effects may be delivered to these motor nuclei by common interneurons. 8. We suggest an interneuronal circuitry that could account for these observations and discuss possible functional implications of modulation of these sensory pathways during locomotion.


2019 ◽  
Vol 237 (8) ◽  
pp. 1959-1971 ◽  
Author(s):  
Leif P. Madsen ◽  
Koichi Kitano ◽  
David M. Koceja ◽  
E. Paul Zehr ◽  
Carrie L. Docherty

1995 ◽  
Vol 73 (5) ◽  
pp. 1947-1964 ◽  
Author(s):  
A. A. Tax ◽  
B. M. Van Wezel ◽  
V. Dietz

1. Cutaneous reflex responses were elicited during human running (8 km/h) on a treadmill by electrical stimulation of the sural nerve at the ankle. Stimulus trains (5 pulses of 1 ms at 200 Hz) at three nonnociceptive intensities, which were 1.5, 2.0, and 2.5 times perception threshold (PT), were delivered at 16 phases of the step cycle. For 11 subjects the surface electromyographic (EMG) activity of both the ipsilateral and contralateral long head of the biceps femoris (iBF and cBF, respectively), the semitendinosus (iST and cST), the rectus femoris (iRF and cRF), and the tibialis anterior (iTA and cTA) were recorded. 2. During human running nonnociceptive sural nerve stimulation appears to be sufficient to elicit large, widespread and statistically significant reflex responses, with a latency of approximately 80 ms and a duration of approximately 30 ms. These reflex responses seem to be an elementary property of human locomotion. This is indicated by the occurrence of the responses in all subjects, the consistency of most of the reflex patterns across the subjects and, apart from a small amount of habituation, the reproducibility of the responses during the course of the experiment. 3. The responses are modulated continuously throughout the step cycle such that their magnitude does not in general covary with the background locomotor activities. This is observed most clearly in iST, iTA, and cTA for which statistically significant reflex reversals are demonstrated, and in cRF and cTA for which the responses are gated during most of the step cycle. 4. The response magnitude generally increases as a function of increasing intensity, whereas the phase-dependent reflex modulation is intensity independent. 5. A functional dissociation within the ipsilateral hamstring muscles is demonstrated: the iBF and iST show an antagonistic reflex pattern (facilitatory and suppressive, respectively) during the periods of synergistic background locomotor activity in the step cycle. Contralaterally, however, the cBF and cST are reflexively activated as close synergists during these periods. 6. The reflex responses and their phase-dependent modulation are different for the homologous muscles in the two legs. Yet, some similarities are observed. These are present rather with respect to the phase of the corresponding leg than with respect to the phase of the stimulated leg. Both observations suggest that the phase-dependent reflex modulation is controlled separately in the ipsilateral and contralateral legs. 7. The response simultaneity in all investigated muscles supports the notion of a coordinated cutaneous interlimb reflex during human running.(ABSTRACT TRUNCATED AT 400 WORDS)


2013 ◽  
Vol 109 (9) ◽  
pp. 2345-2353 ◽  
Author(s):  
Megan K. MacGillivray ◽  
Marc Klimstra ◽  
Bonita Sawatzky ◽  
E. Paul Zehr ◽  
Tania Lam

Previous research has reported that training and experience influence H-reflex amplitude during rhythmic activity; however, little research has yet examined the influence of training on cutaneous reflexes. Manual wheelchair users (MWUs) depend on their arms for locomotion. We postulated that the daily dependence and high amount of use of the arms for mobility in MWUs would show differences in cutaneous reflex modulation during upper limb cyclic movements compared with able-bodied control subjects. We hypothesized that MWUs would demonstrate increased reflex response amplitudes for both manual wheeling and symmetrical arm cycling tasks. The superficial radial nerve was stimulated randomly at different points of the movement cycle of manual wheeling and symmetrical arm cycling in MWUs and able-bodied subjects naive to wheeling. Our results showed that there were no differences in amplitude modulation of early- or middle-latency cutaneous reflexes between the able-bodied group and the MWU group. However, there were several differences in amplitude modulation of cutaneous reflexes between tasks (manual wheeling and symmetrical arm cycling). Specifically, differences were observed in early-latency responses in the anterior and posterior deltoid muscles and biceps and triceps brachii as well as in middle-latency responses in the anterior and posterior deltoid. These data suggest that manual wheeling experience does not modify the pattern of cutaneous reflex amplitude modulation during manual wheeling. The differences in amplitude modulation of cutaneous reflexes between tasks may be a result of mechanical differences (i.e., hand contact) between tasks.


Sign in / Sign up

Export Citation Format

Share Document