R2131 Antimicrobial activity of polymyxin B against non-fermentative Gram-negative bacteria in Georgia

2007 ◽  
Vol 29 ◽  
pp. S617
Author(s):  
A. Nanuashvili ◽  
M. Kereselidze ◽  
T. Davitashvili
2015 ◽  
Vol 1 (11) ◽  
pp. 568-575 ◽  
Author(s):  
Kade D. Roberts ◽  
Mohammad A. K. Azad ◽  
Jiping Wang ◽  
Andrew S. Horne ◽  
Philip E. Thompson ◽  
...  

1996 ◽  
Vol 40 (6) ◽  
pp. 1438-1441 ◽  
Author(s):  
A Kubo ◽  
C S Lunde ◽  
I Kubo

Combinations of polymyxins and phytochemicals were tested for antimicrobial activity against two gram-negative bacteria. Various degrees of potentiation were found against Pseudomonas aeruginosa and Escherichia coli with (E)-2-hexenal and indole. Three-compound combinations were found to further increase the activity of polymyxin B sulfate and colistin methanesulfonate against both bacteria. Combinations with colistin against P. aeruginosa resulted in the highest degree of potentiation, with a 512-fold increase in colistin antimicrobial activity. These results indicate the potential efficacy of phytochemical combinations with antibiotics to enhance total biological activity.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2020 ◽  
Vol 22 (1) ◽  
pp. 105
Author(s):  
Wanting Li ◽  
Zixuan Huang ◽  
Rui Cai ◽  
Wan Yang ◽  
Huawei He ◽  
...  

Silver-based hybrid nanomaterials are receiving increasing attention as potential alternatives for traditional antimicrobial agents. Here, we proposed a simple and eco-friendly strategy to efficiently assemble zinc oxide nanoparticles (ZnO) and silver nanoparticles (AgNPs) on sericin-agarose composite film to impart superior antimicrobial activity. Based on a layer-by-layer self-assembly strategy, AgNPs and ZnO were immobilized on sericin-agarose films using the adhesion property of polydopamine. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction spectroscopy were used to show the morphology of AgNPs and ZnO on the surface of the composite film and analyze the composition and structure of AgNPs and ZnO, respectively. Water contact angle, swelling ratio, and mechanical property were determined to characterize the hydrophilicity, water absorption ability, and mechanical properties of the composite films. In addition, the antibacterial activity of the composite film was evaluated against Gram-positive and Gram-negative bacteria. The results showed that the composite film not only has desirable hydrophilicity, high water absorption ability, and favorable mechanical properties but also exhibits excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria. It has shown great potential as a novel antimicrobial biomaterial for wound dressing, artificial skin, and tissue engineering.


2016 ◽  
Vol 88 (1) ◽  
pp. 155-163 ◽  
Author(s):  
Tiele Carvalho ◽  
Sueli Van Der Sand

Endophytic actinomycetes are promising sources of antimicrobial substances. This study evaluates the activity of metabolites produced by the endophytic actinomycete R18(6) against Gram-negative bacteria multiresistant to antimicrobials. R18(6) isolate was grown in submerged cultures under different conditions: carbon source, temperature, pH and incubation time to optimize antimicrobials production. The actinomycete grown in base medium supplemented with 1% glucose, pH 6.5 and incubation at 30 ºC for 96 h with shaking at 100 rpm, exhibited the highest activity against the used Gram-negative bacteria. Minimum inhibitory concentration (MIC) of the crude extract produced by the microorganism varied between 1/32 and 1/256. It had bactericide or bacteriostatic activity, depending on the Gram-negative organism. The active extract was stable at high temperatures, and unstable in medium containing proteolytic enzymes. Micromorphology of R18(6) was investigated by optical and scan microscopy, revealing that it was morphologically similar to the genusStreptomyces.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


2003 ◽  
Vol 47 (8) ◽  
pp. 2659-2662 ◽  
Author(s):  
John P. Ouderkirk ◽  
Jill A. Nord ◽  
Glenn S. Turett ◽  
Jay Ward Kislak

ABSTRACT Reported rates of nephrotoxicity associated with the systemic use of polymyxins have varied widely. The emergence of infections due to multiresistant gram-negative bacteria has necessitated the use of systemic polymyxin B once again for the treatment of such infections. We retrospectively investigated the rate of nephrotoxicity in patients receiving polymyxin B parenterally for the treatment of infections caused by multiresistant gram-negative bacteria from October 1999 to September 2000. Demographic and clinical information was obtained for 60 patients. Outcome measures of interest were renal toxicity and clinical and microbiologic efficacy. Renal failure developed in 14% of the patients, all of whom had normal baseline renal function. Development of renal failure was independent of the daily and cumulative doses of polymyxin B and the length of treatment but was significantly associated with older age (76 versus 59 years, P = 0.02). The overall mortality was 20%, but it increased to 57% in those who developed renal failure. The organism was cleared in 88% of the patients from whom repeat specimens were obtained. The use of polymyxin B to treat multiresistant gram-negative infections was highly effective and associated with a lower rate of nephrotoxicity than previously described.


Sign in / Sign up

Export Citation Format

Share Document