P34 Alveolar epithelial lining fluid concentration of levofloxacin in patients with idiopathic pulmonary fibrosis

2013 ◽  
Vol 42 ◽  
pp. S52
Author(s):  
Z. Xu ◽  
H. Huang ◽  
C. Jiang ◽  
Y. Wang ◽  
L. Lang ◽  
...  
2017 ◽  
Vol 61 (4) ◽  
Author(s):  
Wentao Ni ◽  
Deqing Yang ◽  
Hekun Mei ◽  
Jin Zhao ◽  
Beibei Liang ◽  
...  

ABSTRACT We determined the concentration-time profiles of ciprofloxacin and amikacin in serum and alveolar epithelial lining fluid (ELF) of rats with or without pulmonary fibrosis and investigated the effect of pulmonary fibrosis on the capacity for penetration of antimicrobials into the ELF of rats. Pulmonary fibrosis was induced in rats with a single intratracheal instillation of bleomycin. After intravenous injection of ciprofloxacin or amikacin, blood and bronchoalveolar lavage fluid samples were collected. Urea concentrations in serum and lavage fluid were determined using an enzymatic assay. Ciprofloxacin and amikacin concentrations were determined by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry, respectively. The mean ratio of ELF to plasma concentrations of ciprofloxacin at each time point in the normal group did not significantly differ from that in the pulmonary fibrosis group. However, the ratio of the ciprofloxacin area under the concentration-time curve from 0 to 24 h (AUC0–24) in ELF to the AUC0–24 in plasma was 1.02 in the normal group and 0.76 in the pulmonary fibrosis group. The mean ELF-to-plasma concentration ratios of amikacin at each time point in the normal group were higher than those in the pulmonary fibrosis group, reaching a statistically significant difference at 1, 2, and 4 h. The ratio of the AUC0–24 in ELF to the AUC0–24 in plasma was 0.49 in the normal group and 0.27 in the pulmonary fibrosis group. In conclusion, pulmonary fibrosis can influence the penetration of antimicrobials into the ELF of rats and may have a marked effect on the penetration of amikacin than that of ciprofloxacin.


2014 ◽  
Vol 307 (9) ◽  
pp. L681-L691 ◽  
Author(s):  
Brett Ley ◽  
Kevin K. Brown ◽  
Harold R. Collard

Molecular biomarkers are highly desired in idiopathic pulmonary fibrosis (IPF), where they hold the potential to elucidate underlying disease mechanisms, accelerated drug development, and advance clinical management. Currently, there are no molecular biomarkers in widespread clinical use for IPF, and the search for potential markers remains in its infancy. Proposed core mechanisms in the pathogenesis of IPF for which candidate markers have been offered include alveolar epithelial cell dysfunction, immune dysregulation, and fibrogenesis. Useful markers reflect important pathological pathways, are practically and accurately measured, have undergone extensive validation, and are an improvement upon the current approach for their intended use. The successful development of useful molecular biomarkers is a central challenge for the future of translational research in IPF and will require collaborative efforts among those parties invested in advancing the care of patients with IPF.


Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 83 ◽  
Author(s):  
Francesco Salton ◽  
Maria Volpe ◽  
Marco Confalonieri

Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung, which leads to extensive parenchymal scarring and death from respiratory failure. The most accepted hypothesis for IPF pathogenesis relies on the inability of the alveolar epithelium to regenerate after injury. Alveolar epithelial cells become apoptotic and rare, fibroblasts/myofibroblasts accumulate and extracellular matrix (ECM) is deposited in response to the aberrant activation of several pathways that are physiologically implicated in alveologenesis and repair but also favor the creation of excessive fibrosis via different mechanisms, including epithelial–mesenchymal transition (EMT). EMT is a pathophysiological process in which epithelial cells lose part of their characteristics and markers, while gaining mesenchymal ones. A role for EMT in the pathogenesis of IPF has been widely hypothesized and indirectly demonstrated; however, precise definition of its mechanisms and relevance has been hindered by the lack of a reliable animal model and needs further studies. The overall available evidence conceptualizes EMT as an alternative cell and tissue normal regeneration, which could open the way to novel diagnostic and prognostic biomarkers, as well as to more effective treatment options.


PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0158367 ◽  
Author(s):  
Supparerk Disayabutr ◽  
Eun Kyung Kim ◽  
Seung-Ick Cha ◽  
Gary Green ◽  
Ram P. Naikawadi ◽  
...  

2016 ◽  
Vol 311 (2) ◽  
pp. L185-L191 ◽  
Author(s):  
Tejaswini Kulkarni ◽  
Joao de Andrade ◽  
Yong Zhou ◽  
Tracy Luckhardt ◽  
Victor J. Thannickal

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive decline in lung function, resulting in significant morbidity and mortality. Current concepts of the pathogenesis of IPF primarily center on dysregulated epithelial cell repair and altered epithelial-mesenchymal communication and extracellular matrix deposition following chronic exposure to cigarette smoke or environmental toxins. In recent years, increasing attention has been directed toward the role of the intercellular junctional complex in determining the specific properties of epithelia in pulmonary diseases. Additionally, recent genomewide association studies suggest that specific genetic variants predictive of epithelial cell dysfunction may confer susceptibility to the development of sporadic idiopathic pulmonary fibrosis. A number of genetic disorders linked to pulmonary fibrosis and familial interstitial pneumonias are associated with loss of epithelial integrity. However, the potential links between extrapulmonary clinical syndromes associated with defects in epithelial cells and the development of pulmonary fibrosis are not well understood. Here, we report a case of hereditary mucoepithelial dysplasia that presented with pulmonary fibrosis and emphysema on high-resolution computed tomography. This case illustrates a more generalizable concept of epithelial disintegrity in the development of fibrotic lung diseases, which is explored in greater detail in this review article.


Sign in / Sign up

Export Citation Format

Share Document