Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro

2003 ◽  
Vol 19 (4) ◽  
pp. 223-230 ◽  
Author(s):  
Anu Töyräs ◽  
Jouko Ollikainen ◽  
Markku Taskinen ◽  
Jukka Mönkkönen
2008 ◽  
Vol 102 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Paola Palozza ◽  
Diana Bellovino ◽  
Rossella Simone ◽  
Alma Boninsegna ◽  
Francesco Cellini ◽  
...  

Lycopene β-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of β-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced β-carotene release and therefore cell growth inhibition. To induce with purified β-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that β-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with β-carotene in promoting cell growth arrest.


2003 ◽  
Vol 68 (4) ◽  
pp. 779-791 ◽  
Author(s):  
Petr Čapek ◽  
Miroslav Otmar ◽  
Milena Masojídková ◽  
Ivan Votruba ◽  
Antonín Holý

Heating of 6-(benzylamino)-2-chloro-9-deazapurine (3) with ethanolamine afforded 6-(benzylamino)-2-[(2-hydroxyethyl)amino]-9-deazapurine (8). Its treatment with formaldehyde in alkaline solution, after protection of the OH group with DMTr, led to hydroxymethylation at position 9. Conversion of the hydroxymethyl group to methyl was performed by catalytic hydrogenation under simultaneous deprotection, which resulted in the formation of the 9-deaza analogue 1 of olomoucine. Compound 1 does not exhibit any significant in vitro cell growth inhibition of CCRF-CEM, HeLa and L-1210 cell lines. Cytostatic activity was found in 6-(benzylamino)-9-deazapurine (2) and its 2-chloro derivative 3 in CCRF-CEM cells with IC50 13.3 and 15.8 μM, respectively.


2008 ◽  
Vol 68 (18) ◽  
pp. 7439-7447 ◽  
Author(s):  
Irina V. Lebedeva ◽  
Zhao-zhong Su ◽  
Nichollaq Vozhilla ◽  
Lejuan Chatman ◽  
Devanand Sarkar ◽  
...  

2005 ◽  
Vol 48 (9) ◽  
pp. 3364-3371 ◽  
Author(s):  
Paride Papadia ◽  
Nicola Margiotta ◽  
Alberta Bergamo ◽  
Gianni Sava ◽  
Giovanni Natile

Author(s):  
Jesica M. Ramírez-Villalobos ◽  
César I. Romo-Sáenz ◽  
Karla S. Morán-Santibañez ◽  
Patricia Tamez-Guerra ◽  
Ramiro Quintanilla-Licea ◽  
...  

Endophytic fungi have become potential sources of antitumor agents, particularly against antineoplastic-resistant cancer cells, with marginal or nil adverse effects for the oncological patient. Endophytic fungi were isolated from stems of the Lophocereus marginatus cactus, commonly found in Mexico. Methanol extracts were then obtained from fungus liquid cultures and their effects on tumor cell growth against murine lymphoma (L5178Y-R), human colorectal adenocarcinoma (HT-29), and human breast cancer (MCF-7) cells were evaluated at concentrations ranging from 31 µg/mL to 250 µg/mL via the colorimetric 3- [4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide reduction assay, using monkey kidney epithelial (MA-104) and human peripheral mononuclear (PBMC) cells as controls. Furthermore, we obtained the IC50 and the selectivity index (SI) was calculated from the IC50 ratio of normal and tumor cells. In addition, molecular identification of fungi showing cytotoxic activity was determined, using internal transcribed spacer molecular markers. PME-H001, PME-H002, PME-H005, PME-H007, and PME-H008 filamentous fungus strain extracts showed significant (p < 0.05) tumor cell growth inhibition. In particular, they significantly (p < 0.05) inhibited L5178Y-R cell growth, whereas the least susceptible cell line was HT-29. The endophytic strain PME-H008 of Cladosporium sp. caused the highest growth inhibition percentage against L5178Y-R and HT-29 cells with 96.6% (p < 0.01) and 42.5% (p < 0.05) respectively, and the highest SIs against L5178Y-R cells with 2.4 and 2.9 for MA-104 and PBMCs, respectively, whereas the PME-H005 extract showed SIs of 2.77 and 1.5 against MCF-7 and L5178Y-R cells, respectively, as compared with PBMCs. In addition, the endophytic strain PME-H007 of Metarhizium anisopliae caused the highest percentage of growth inhibition (p < 0.01) against MCF-7 cells with 55.8% at 250 µg/mL. We demonstrated in vitro antitumor effects of L. marginatus endophytic fungi. Further research will involve the isolation and in vivo testing of bioactive compounds.


Sign in / Sign up

Export Citation Format

Share Document