Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis) and perennial ryegrass (Lolium perenne)

1993 ◽  
Vol 97 (9) ◽  
pp. 1083-1092 ◽  
Author(s):  
M.J. Christensen ◽  
Adrian Leuchtmann ◽  
D.D. Rowan ◽  
B.A. Tapper
Author(s):  
A.G. Scott ◽  
D.W.R. White

Tissue culture was used in an attempt to obtain a fertile perennial ryegrass x tall fescue hybrid. Regenerated hybrid plants were found to be morphologically variable and contain extensive chromosome rearrangements. Spontaneous chromosome doubling had occurred as well as chromosome elimination. though no fertile hybrid plants have been obtained to date. Keywords: somaclonal variation, Lolium perenne, Festuca arundinacea, intergeneric hybrids


2011 ◽  
Vol 15 ◽  
pp. 157-162
Author(s):  
G.D. Milne

Recent discussion about pasture persistence concentrates on pastures based on perennial ryegrass, the most commonly used grass species. This paper raises the question as to whether some of the causes of poor pasture persistence are due to perennial ryegrass being used in environments to which it is not suited. The adaptation to environmental stresses, particularly water, temperature and nutrient deficiencies, in different regions of New Zealand of tall fescue, cocksfoot, phalaris, and lucerne are discussed, and how this impacts on persistence advantages over perennial ryegrass. Keywords: persistence, pasture, Dactylis glomerata, Festuca arundinacea, Lolium perenne, Medicago sativa, Phalaris aquatica


2000 ◽  
Vol 40 (8) ◽  
pp. 1059 ◽  
Author(s):  
W. J. Fulkerson ◽  
J. F. M. Fennell ◽  
K. Slack

A grazing study was conducted, over a 3-year period (1997–99), on the subtropical north coast of New South Wales, Australia, to compare the yield of prairie grass (Bromus willdenowii cv. Matua), tall fescue (Festuca arundinacea cv. Vulcan) and perennial ryegrass (Lolium perenne cv. Yatsyn), on a well-drained red krasnozem soil at Wollongbar Agricultural Research Institute (WAI) and on a heavy clay soil at Casino. The effect of grazing interval (equivalent to the time taken to regrow 1.5, 2.5 or 4 leaves/tiller) in spring, and forage quality of prairie grass in winter and spring was also assessed. At both sites, the dry matter (DM) yields of prairie grass over the establishment year and in year 2 were significantly (P<0.001) higher than for the other 2 grass species (mean for 2 years over the 2 sites was 23.8, 8.9 and 7.7 t DM/ha for prairie grass, ryegrass and tall fescue, respectively). In year 3, there was no production of tall fescue or ryegrass at the WAI site while prairie grass produced 11.3 t DM/ha although this was obtained from natural seedling recruitment after the sward was sprayed with a herbicide in February of that year. At the Casino site, ryegrass and tall fescue still made substantial growth in year 3 (3.1 and 2.1 t DM/ha for ryegrass and tall fescue, respectively) but this was significantly below the yields of prairie grass (5.5 t DM/ha). More frequent grazing of prairie grass in spring (equivalent to 1.5 leaves/tiller of regrowth) led to significantly (P<0.05) less plants surviving summer and less seedling recruitment in the following autumn. The annual yield of the 1.5 leaf treatment was significantly (P<0.05) lower than the remaining treatments but only in the third year of the study. Analysis of prairie grass forage samples, taken in June (vegetative sward) and November (reproductive sward), gave magnesium values of less than 0.2% DM which is below the concentration found in ryegrass and that recommended for dairy cattle. The Ca : P and K : (Ca + Mg) ratios in prairie grass improved, as a forage for dairy cows, with regrowth time up to 5 leaves/tiller. Metabolisable energy remained constant with regrowth time in June at 10.8 MJ/kg DM but fell significantly in November from 10.7 MJ/kg DM, immediately post-grazing, to 9.2 MJ/kg DM at the 4.5 leaves/tiller stage of regrowth. In contrast to observations in ryegrass, the water-soluble carbohydrate content of forage samples of prairie grass taken in November showed a substantial increase with regrowth time to over 12% DM at the 3 leaves/tiller stage of regrowth. The high productivity and forage quality of prairie grass obtained over a 3-year period suggests this grass species could be a suitable temperate perennial grass for subtropical dairy pastures. An appropriately long grazing interval in spring seems critical to optimise plant survival over summer and for adequate seed set for seedling recruitment the following autumn. If summer weeds and/or grasses invade to a significant extent, the large seedbank of prairie grass provides the opportunity to spray out the pasture in summer and rely on seedling recruitment to establish a new sward in autumn. The forage quality of prairie grass in winter and spring is similar to perennial ryegrass but the magnesium levels are substantially lower and stock grazing this type of pasture for extended periods would need to be supplemented with this mineral.


1994 ◽  
Vol 123 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Y. Gao ◽  
D. Wilman

SummaryLeaf development was studied in eight related grasses, grown in field swards cut at 5-week intervals, during the year of sowing and the subsequent year (1989 and 1990). The rate of leaf expansion was in the order Westerwolds ryegrass > Italian ryegrass (Lolium multiflorum), Italian ryegrass × meadow fescue > hybrid ryegrass > perennial ryegrass × meadow fescue, meadow fescue (Festuca pratensis), tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne). The order of grasses was similar, but not identical, for rate of leaf appearance, rate of leaf extension, weight of leaf blade emerging per shoot per week and rate of increase in length of exposed leaf sheath, and the order was approximately the reverse for weight per unit area of emerging leaf blade. The area per leaf blade increased greatly between May and October of the year of sowing, particularly in Westerwolds, Italian and hybrid ryegrasses and Italian ryegrass × meadow fescue. Area per leaf blade in tall fescue increased greatly between May and July of the year of sowing and May–July of the subsequent year. Rate of leaf expansion in meadow fescue was much higher in May of the year after sowing than in the previous May.


2012 ◽  
Vol 26 (4) ◽  
pp. 673-678 ◽  
Author(s):  
Patrick E. McCullough ◽  
Jialin Yu ◽  
James T. Brosnan ◽  
Gregory K. Breeden

Flucarbazone controls certain grassy weeds in wheat and may have potential for controlling perennial ryegrass in tall fescue turf. The objective of these experiments was to investigate perennial ryegrass and tall fescue tolerance to flucarbazone at two application timings. In field experiments, flucarbazone applications in May were more injurious to both species than in February and March. Single applications of flucarbazone from 30 to 60 g ai ha−1in May injured both species 35 to 50% and sequential treatments increased injury approximately twofold. Two applications of flucarbazone at 60 g ha−1in May injured both grasses > 90%, similar to sequential applications of trifloxysulfuron at 29 g ai ha−1. In growth chamber experiments, injury from flucarbazone on both grasses increased as temperature increased from 10 to 30 C. Flucarbazone reduced total shoot biomass of both grasses at all temperatures after 4 wk. Overall, perennial ryegrass and tall fescue are tolerant to flucarbazone at moderate temperatures (10 to 20 C). However, injury increased substantially under warmer conditions (30 C), suggesting flucarbazone could control perennial ryegrass and tall fescue during late spring and early summer.


2007 ◽  
Vol 13 ◽  
pp. 369-372
Author(s):  
L.L. Blythe ◽  
A.M. Craig ◽  
C. Estill ◽  
C. Cebra

There are multiple vehicles for endophyte toxicosis in animals including exposure from pasture, straw residues and seed screenings. This report discusses the clinical cases typically seen with tall fescue and perennial ryegrass toxicosis in Oregon and Japan. Case I involves a herd of 330 Black Angus cattle. Before the March calving season the owner wished to increase the protein content of the feed ration by feeding pellets made of seed screenings and grass hay. Forty two animals were lost to tall fescue toxicosis and dry gangrene of the feet and legs. Case II involves 1300 beef cows in Eastern Oregon fed grass straw; 485 animals were lost due to dry gangrene characteristic of tall fescue toxicosis. Case III describes 4 of 15 cases of both tall fescue and perennial ryegrass toxicosis in Japanese black cattle. Case IV involves llamas and alpacas on pasture and lawn paddocks where some animals were affected by tall fescue and some by perennial ryegrass. Keywords: tall fescue, Festuca arundinacea L., perennial ryegrass, Lolium perenne, endophyte, Neotyphodium coenophialum, Neotyphodium lolii


Author(s):  
D.A. Mccallum ◽  
N.A. Thomson

The effect of a molluscicide or an insecticide on the establishment, by direct drilling of 'Grasslands Roa' tall fescue (Festuca arundinacea Schreb.) 'Ellett' perennial ryegrass (Lolium perenne L), and 'Grasslands Maru' phalaris (Phalaris aquatica L.) was measured in spring and autumn establishment over 2 years. In autumn after a wet summer the application of a molluscicide significantly increased seedling numbers and establishment yield for ryegrass and tall fescue. A molluscicide applied in autumn after a dry summer or in spring had no effect . Application of insecticide significantly improved the establishment of ryegrass and tall fescue in only one of the two springs and had no effect in autumn. Phalaris was the least responsive of the pasture species to either an insecticide or molluscicide. These differences observed at establishment resulting from the applications of a pesticide were not apparent in an assessment made 1 year later. For tall fescue the results recorded on seedling numbers and yield of sown species at establishment and 1 year would suggest that for this species establishment by direct drilling is not recommended. Keywords pasture establishment, 'Grasslands Roa' tall fescue, 'Ellett' ryegrass, 'Grasslands Maru' phalaris, direct drilling, molluscicide, insecticide


1996 ◽  
Vol 127 (1) ◽  
pp. 57-65 ◽  
Author(s):  
D. Wilman ◽  
Y. Gao

SUMMARYFour grass species, three hybrids and three mixtures were grown in field swards near Aberystwyth. All swards were amply supplied with nutrients and were cut at 5-week intervals during the year of sowing (1989) and during the following 4 years. The order of the grasses in rate of establishment was: Westerwolds ryegrass > Italian ryegrass (Lolium multiflorum) > Italian ryegrass × perennial ryegrass, Italian ryegrass × meadow fescue, perennial ryegrass (Lolium perenne) > perennial ryegrass × meadow fescue, meadow fescue (Festuca pratensis) > tall fescue (Festuca arundinacea). During the sowing year as a whole, Italian ryegrass was the highest yielding grass, followed by Westerwolds ryegrass. During the remaining period (1990–93), as a whole, the highest yields were obtained from perennial ryegrass sown alone or in a mixture with tall fescue. Tall fescue sown alone was one of the lowest yielding grasses in the year of sowing, but developed to be the highest yielding in 1992 and 1993. Westerwolds ryegrass persisted least well, although some plants did survive until 1992. Italian ryegrass persisted better than Westerwolds and Italian ryegrass × meadow fescue persisted better than Italian ryegrass. Hybrid ryegrass and perennial ryegrass × meadow fescue persisted satisfactorily but with fewer tillers/m2 than perennial ryegrass or tall fescue. The yield of tall fescue in March was as high as that of Italian ryegrass in 1990 and 1991 and higher than that of any of the other grasses in 1992 and 1993; the tiller density of tall fescue was particularly high in March. The yield of mixtures (Italian ryegrass with perennial ryegrass, Italian ryegrass with tall fescue and perennial ryegrass with tall fescue) was, on average, 2·5% more than the mean of the component species when sown alone. When grown with ryegrass, tall fescue was not prominent initially but its proportion in the sward gradually increased.


1999 ◽  
Vol 35 (1) ◽  
pp. 55-62 ◽  
Author(s):  
D. Wilman ◽  
K. H. Dong ◽  
Z. L. Jin

The possibility of growing grasses of higher quality than tall fescue (Festuca arundinacea) in a continental climate with cold winters, hot summers and low precipitation was investigated with and without irrigation at Taigu, Shanxi, China. Tall fescue was compared with perennial ryegrass (Lolium perenne), meadow fescue (Festuca pratensis) and a perennial ryegrass × meadow fescue hybrid cultivar in field swards, managed by cutting, during the year of sowing and in the three subsequent years. Tall fescue persisted satisfactorily throughout the experiment, even without irrigation. With irrigation, the other three grasses persisted satisfactorily to the end of the second harvest year and fairly satisfactorily to the end of the third harvest year. Without irrigation, the other three grasses had incomplete ground cover in the second harvest year and did not recover from the third winter.


Sign in / Sign up

Export Citation Format

Share Document