In vivo estimation of periapical bone reconstruction by chondroitin sulfate in calcium phosphate cement

2004 ◽  
Vol 24 (2) ◽  
pp. 521-531 ◽  
Author(s):  
Masataka Yoshikawa ◽  
Tadao Toda
Author(s):  
Akiyoshi Shimatani ◽  
Hiromitsu Toyoda ◽  
Kumi Orita ◽  
Yuta Ibara ◽  
Yoshiyuki Yokogawa ◽  
...  

AbstractThis study investigated whether mixing low viscosity alginic acid with calcium phosphate cement (CPC) causes interconnected porosity in the CPC and enhances bone replacement by improving the biological interactions. Furthermore, we hypothesized that low viscosity alginic acid would shorten the setting time of CPC and improve its strength. CPC samples were prepared with 0, 5, 10, and 20% low viscosity alginic acid. After immersion in acetate buffer, possible porosification in CPC was monitored in vitro using scanning electron microscopy (SEM), and the setting times and compressive strengths were measured. In vivo study was conducted by placing CPC in a hole created on the femur of New Zealand white rabbit. Microcomputed tomography and histological examination were performed 6 weeks after implantation. SEM images confirmed that alginic acid enhanced the porosity of CPC compared to the control, and the setting time and compressive strength also improved. When incorporating a maximum amount of alginic acid, the new bone mass was significantly higher than the control group (P = 0.0153). These biological responses are promising for the translation of these biomaterials and their commercialization for clinic applications.


2007 ◽  
Vol 330-332 ◽  
pp. 1091-1094
Author(s):  
H. Kim ◽  
M. Park ◽  
Su Young Lee ◽  
Kang Yong Lee ◽  
Hyun Min Kim ◽  
...  

Demineralized bone matrix (DBM)-calcium phosphate cement (CPC) composites were subjected to cellular test of osteogenic potentials and implantation in animal model. The expression of osteogenic marker gene from mouse preosteoblast cell line MC3T3-E1 adhered to the DBM-CPC composite was much higher than plain CPC. In addition, the DBM-CPC composite implanted nude mice revealed osteoinduction between the implanted composite and adjacent tissues, whereas the plain CPC induced osteoconduction.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3075
Author(s):  
Sok Kuan Wong ◽  
Yew Hoong Wong ◽  
Kok-Yong Chin ◽  
Soelaiman Ima-Nirwana

Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.


Orthopedics ◽  
2009 ◽  
Vol 32 (1) ◽  
pp. 27-6 ◽  
Author(s):  
Zhiping Yang ◽  
Dong Li ◽  
Jian Han ◽  
Jianmin Li ◽  
Xin Li ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Rania M. Khashaba ◽  
Mervet M. Moussa ◽  
Donald J. Mettenburg ◽  
Frederick A. Rueggeberg ◽  
Norman B. Chutkan ◽  
...  

New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement.In vitrocytotoxicity andin vivobiocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5–15 min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications.


2009 ◽  
Vol 29 (3) ◽  
pp. 969-975 ◽  
Author(s):  
Xia Li ◽  
Yu Sogo ◽  
Atsuo Ito ◽  
Hirotaka Mutsuzaki ◽  
Naoyuki Ochiai ◽  
...  

2010 ◽  
Vol 89 (8) ◽  
pp. 836-841 ◽  
Author(s):  
E. Bresciani ◽  
W.C. Wagner ◽  
M.F.L. Navarro ◽  
S.H. Dickens ◽  
M.C. Peters

Sign in / Sign up

Export Citation Format

Share Document