scholarly journals Polymeric-Calcium Phosphate Cement Composites-Material Properties:In VitroandIn VivoInvestigations

2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Rania M. Khashaba ◽  
Mervet M. Moussa ◽  
Donald J. Mettenburg ◽  
Frederick A. Rueggeberg ◽  
Norman B. Chutkan ◽  
...  

New polymeric calcium phosphate cement composites (CPCs) were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement.In vitrocytotoxicity andin vivobiocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5–15 min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications.

Author(s):  
Akiyoshi Shimatani ◽  
Hiromitsu Toyoda ◽  
Kumi Orita ◽  
Yuta Ibara ◽  
Yoshiyuki Yokogawa ◽  
...  

AbstractThis study investigated whether mixing low viscosity alginic acid with calcium phosphate cement (CPC) causes interconnected porosity in the CPC and enhances bone replacement by improving the biological interactions. Furthermore, we hypothesized that low viscosity alginic acid would shorten the setting time of CPC and improve its strength. CPC samples were prepared with 0, 5, 10, and 20% low viscosity alginic acid. After immersion in acetate buffer, possible porosification in CPC was monitored in vitro using scanning electron microscopy (SEM), and the setting times and compressive strengths were measured. In vivo study was conducted by placing CPC in a hole created on the femur of New Zealand white rabbit. Microcomputed tomography and histological examination were performed 6 weeks after implantation. SEM images confirmed that alginic acid enhanced the porosity of CPC compared to the control, and the setting time and compressive strength also improved. When incorporating a maximum amount of alginic acid, the new bone mass was significantly higher than the control group (P = 0.0153). These biological responses are promising for the translation of these biomaterials and their commercialization for clinic applications.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3075
Author(s):  
Sok Kuan Wong ◽  
Yew Hoong Wong ◽  
Kok-Yong Chin ◽  
Soelaiman Ima-Nirwana

Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.


Orthopedics ◽  
2009 ◽  
Vol 32 (1) ◽  
pp. 27-6 ◽  
Author(s):  
Zhiping Yang ◽  
Dong Li ◽  
Jian Han ◽  
Jianmin Li ◽  
Xin Li ◽  
...  

2007 ◽  
Vol 336-338 ◽  
pp. 1625-1627
Author(s):  
Li Min Dong ◽  
Chen Wang ◽  
Rui Liu ◽  
Jie Mo Tian ◽  
Qing Feng Zan

The in vivo study was performed to evaluate the biocompatibility and osteogenous ability of injectable fast-setting calcium phosphate cement (CPC). Eighteen four-week-old New Zealand white rabbits were divided into six groups randomly, three in each group. According to the principle of selfcontrast at the same time, cavities of 5mm in diameter and 6mm in depth were drilled in femoral condyle of rabbits. The materials were implanted into cavities of the left leg, the right leg as the blank control group. Rabbits were sacrificed at 2, 4, 8, 12, 16 and 24 weeks after surgery. The microstructure of specimens was observed using ESEM. The results showed that injectable fast-setting CPC had good fluidity and plasticity; it could be injected into bone defects and fast-set in situ. The start setting time was 5-8 min and the compressive strength was 25-30 MPa. The CPC had good biocompatibility and osteoconductivity, and benefited to the repair of bone defects.


2021 ◽  
Vol 2 ◽  
Author(s):  
Rashed A. Alsahafi ◽  
Heba Ahmed Mitwalli ◽  
Abdulrahman A. Balhaddad ◽  
Michael D. Weir ◽  
Hockin H. K. Xu ◽  
...  

The management and treatment of dental and craniofacial injuries have continued to evolve throughout the last several decades. Limitations with autograft, allograft, and synthetics created the need for more advanced approaches in tissue engineering. Calcium phosphate cements (CPC) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. This review focuses on the up-to-date performance of calcium phosphate cement (CPC) scaffolds and upcoming promising dental and craniofacial bone regeneration strategies. First, we summarized the barriers encountered in CPC scaffold development. Second, we compiled the most up to date in vitro and in vivo literature. Then, we conducted a systematic search of scientific articles in MEDLINE and EMBASE to screen the related studies. Lastly, we revealed the current developments to effectively design CPC scaffolds and track the enhanced viability and therapeutic efficacy to overcome the current limitations and upcoming perspectives. Finally, we presented a timely and opportune review article focusing on the significant potential of CPC scaffolds for dental and craniofacial bone regeneration, which will be discussed thoroughly. CPC offers multiple capabilities that may be considered toward the oral defects, expecting a future outlook in nanotechnology design and performance.


Author(s):  
Soomin Lee ◽  
Zheng Li ◽  
Dehua Meng ◽  
Qinming Fei ◽  
Libo Jiang ◽  
...  

Abstract Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC–CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC–CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC–CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC–CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC–CS containing 60% CS. These findings suggest that CPC–CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC–CS shows potential as a bone substitute material.


2019 ◽  
Vol 33 (8) ◽  
pp. 1094-1104 ◽  
Author(s):  
Guowen Qian ◽  
Xingmei Li ◽  
Fupo He ◽  
Jiandong Ye

Anti-washout calcium phosphate cement (CPC) was prepared by dissolving water-soluble konjac glucomannan (KGM) and κ-carrageenan (KC) blend in the cement liquid. The anti-washout property, setting time, compressive strength and in vitro cytocompatibility of the CPC modified with KGM/KC blend were evaluated. The results indicated that the CPC pastes modified with KGM/KC blend exhibited excellent anti-washout property. The addition of KGM/KC blend shortened the setting time and increased the injectability of CPC. Although the introduction of KGM/KC blend reduced the compressive strength of CPC, the compressive strength still surpassed that of human cancellous bone. The optimal KGM/KC mass ratio was 2:8, with which the modified cement exhibited the most efficient washout resistance and the highest compressive strength. The introduction of KGM/KC blend obviously promoted the proliferation of mouse bone marrow mesenchymal stem cells. This anti-washout CPC modified by KGM/KC blend with excellent in vitro cytocompatibility will have good prospects for application in bone defect repair.


Sign in / Sign up

Export Citation Format

Share Document