Characterization of acetate metabolism in tumor cells in relation to cell proliferation: Acetate metabolism in tumor cells

2001 ◽  
Vol 28 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Mitsuyoshi Yoshimoto ◽  
Atsuo Waki ◽  
Yoshiharu Yonekura ◽  
Norihiro Sadato ◽  
Tetsuhito Murata ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Duan ◽  
Hongning Cai ◽  
Yanming Huang ◽  
Liangyan Shi

Polycystic ovary syndrome (PCOS), one of the most common types of endocrine diseases, is characterized by a high prevalence among women of reproductive-age. However, its pathogenesis and molecular mechanisms remain unclear. CircMTO1 has been reported to participate in numerous biological processes, but, its role in PCOS progression remains unknown. In the current study, we elucidated the expression and circRNA characterization of circMTO1 in human granulosa-like tumor cells. We found that circMTO1 knockdown promoted human granulosa-like tumor cell proliferation and inhibited its apoptosis rate. Next, we explored the underlying molecular mechanisms by using a series of experiments. Our results revealed the effect of the novel circMTO1/miR-320b/MCL1 axis in human granulosa-like tumor cells. Furthermore, we found that the expression of circMTO1 was induced by Snail family transcriptional repressor 2 (SNAI2) in human granulosa-like tumor cells. Our results may provide potential targets for PCOS research and a novel direction for the diagnosis and treatment of PCOS.


1980 ◽  
Vol 12 (03) ◽  
pp. 94-96 ◽  
Author(s):  
M. Goldberg ◽  
W. Strecker ◽  
D. Feeny ◽  
G. Ruhenstroth-Bauer

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1816
Author(s):  
Jessica Amarù ◽  
Federica Barbieri ◽  
Marica Arvigo ◽  
Agnese Solari ◽  
Adriana Bajetto ◽  
...  

First-generation somatostatin receptor ligands (fg-SRLs), such as octreotide (OCT), represent the first-line medical therapy in acromegaly. Fg-SRLs show a preferential binding affinity for somatostatin receptor subtype-2 (SST2), while the second-generation ligand, pasireotide (PAS), has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). Whether PAS acts via SST2 in somatotroph tumors, or through other SSTs (e.g., SST5), is a matter of debate. In this light, the combined treatment OCT+PAS could result in additive/synergistic effects. We evaluated the efficacy of OCT and PAS (alone and in combination) on growth hormone (GH) secretion in primary cultures from human somatotroph tumors, as well as on cell proliferation, intracellular signaling and receptor trafficking in the rat GH4C1 cell line. The results confirmed the superimposable efficacy of OCT and PAS in reducing GH secretion (primary cultures), cell proliferation, cAMP accumulation and intracellular [Ca2+] increase (GH4C1 cells), without any additive effect observed for OCT+PAS. In GH4C1 cells, co-incubation with a SST2-selective antagonist reversed the inhibitory effect of OCT and PAS on cell proliferation and cAMP accumulation, while both compounds resulted in a robust internalization of SST2 (but not SST5). In conclusion, OCT and PAS seem to act mainly through SST2 in somatotroph tumor cells in vitro, without inducing any additive/synergistic effect when tested in combination.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 181
Author(s):  
Francesca Zonta ◽  
Christian Borgo ◽  
Camila Paz Quezada Meza ◽  
Ionica Masgras ◽  
Andrea Rasola ◽  
...  

CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α’) CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α’ contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting.


Sign in / Sign up

Export Citation Format

Share Document