scholarly journals Improved Wavelet-based Spatial Filter of Damage Imaging Method on Composite Structures

2011 ◽  
Vol 24 (5) ◽  
pp. 665-672 ◽  
Author(s):  
Yu WANG ◽  
Shenfang YUAN ◽  
Lei QIU
2012 ◽  
Vol 24 (2) ◽  
pp. 209-225 ◽  
Author(s):  
Zixue Qiu ◽  
Lei Qiu ◽  
Jiang Yuan ◽  
Guan Lu

Time reversal focusing method has been proved to be an effective method for active Lamb wave–based structural health monitoring. In this article, aiming at developing a practical method for online localization of damage on aircraft composite structures that can take advantage of time reversal focusing and do not rely on the transfer function, a phase synthesis–based time reversal focusing method was proposed. In this method, damage images are given out directly through time reversal focusing, and the other imaging processes such as the delay-and-sum imaging method adopted in many researches of time reversal focusing are not needed. Based on the damage imaging method, a structural health monitoring demonstration system was built on a composite panel of an aircraft wing box with many bolt holes and stiffeners. The demonstrated results show that this method can estimate the positions of damages efficiently with a low sensitivity of group velocity errors and a high antijamming capability.


2013 ◽  
Vol 718-720 ◽  
pp. 2062-2067 ◽  
Author(s):  
Shang Chen Fu ◽  
Zhen Jian Lv ◽  
Ding Ma ◽  
Li Hua Shi

The use of Lamb waves for structural health monitoring (SHM) has complicated by its multi-mode character and dispersion effect, which impacts the damage positioning and high-resolution imaging. The group velocity dispersion curves of Lamb waves can be employed to warp the frequency axis, and then to establish warped frequency transform (WFT) to process Lamb waves. In this paper, received signals are directly compensated with warped frequency transform to suppress dispersion, and a new imaging method is proposed based on warped frequency transform. The propagation of Lamb waves in damaged aluminum plate is simulated by finite element software ABAQUS, results show that warped frequency transform can effectively compensate dispersive wave-packets, and high-resolution damage imaging can be obtained by the proposed method.


2013 ◽  
Vol 577-578 ◽  
pp. 661-664
Author(s):  
Zhao Xiang Wei ◽  
Hong Xu ◽  
Hong Yuan Li

Ultrasonic guided waves can propagate a long distance in pipeline with little attenuation. This means the damage in nuclear power plant can be detected from a remote single position. In the paper, the propagation of the guided waves are analyzed for the nuclear power plant pipes, and the axisymmetric torsional mode T(0,1) is chosen as the detection mode. An imaging method based on the synthetic focusing algorithm is used to obtain the damage information. The method is then verified by the finite element model. Results illustrate that the damage can be detected and located accurately by the damage imaging method. Not only the axial position, but also the circumferential position can be located simultaneously.


2013 ◽  
Vol 330 ◽  
pp. 542-548
Author(s):  
Lei Qiu ◽  
Shen Fang Yuan ◽  
Tian Xiang Huang

Composite structures adopted in aerospace structures have attracted much interest to structural health monitoring (SHM) for localization of impact and damage positions due to their poor impact resistance properties. Propagation mechanism and frequency dispersion characteristics of Lamb wave signals on composite structures are more complicated than that on simple aluminum plates. Recently, much attention has been paid to the research of time reversal focusing method because this method shows a promising advantage to give a focusing image of the structural damage, improve the signal-to-noise ratio and compensate the dispersion of Lamb wave signals. In this paper, aiming at developing a practical method for on-line localization of impact and damage on aircraft composite structures which can take advantage of time reversal focusing and does not rely on the transfer function, a new phase synthesis based time reversal focusing method is proposed. Impact and damage images are given out directly through time reversal focusing based on phase synthesis process of the signals. A SHM demonstration system is built on a composite panel of an aircraft wing box with many bolt holes and stiffeners using the phase synthesis based time reversal focusing method. The demonstration results show that this method can estimate the positions of impact and damage efficiently with a low sensitivity of velocity errors.


2010 ◽  
Vol 19 (11) ◽  
pp. 114301 ◽  
Author(s):  
Hai-Yan Zhang ◽  
Ya-Ping Cao ◽  
Xiu-Li Sun ◽  
Xian-Hua Chen ◽  
Jian-Bo Yu

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 30100-30109 ◽  
Author(s):  
Weihang Gao ◽  
Linsheng Huo ◽  
Hongnan Li ◽  
Gangbing Song

2019 ◽  
Vol 19 (6) ◽  
pp. 1629-1644 ◽  
Author(s):  
Liang Zeng ◽  
Liping Huang ◽  
Zhi Luo ◽  
Jing Lin

This article presents a multipath Lamb wave imaging method that leverages the extra reflections present in the recorded ultrasonic waveforms for structural prognosis. Under the ray acoustic approximation, an edge behaves like a mirror, which changes the propagation path of a wave and provides more views of the damage than can be obtained from direct scattering. To accommodate for these extra reflections, the scattering path of each wave in the residual signal is simplified as a direct scattering path from an actual or virtual transmitter (created by edge mirroring) to the damage, and then back to an actual or virtual receiver (created by edge mirroring). On this basis, the Gaussian distribution function is introduced to quantify the probabilities at each spatial node in relation to all possible damage loci. Through fusing the images obtained from all individual wave packets, the structure could be inspected with far fewer transducers compared to conventional elliptical imaging. Experimental results from carbon fiber-reinforced polymer laminates and aluminum plate are provided to illustrate the effectiveness of the imaging method, where damage is correctly detected and accurately localized even with a single transmitter–receiver pair.


1995 ◽  
Vol 2 (3) ◽  
pp. 207-210
Author(s):  
Naomasa Shiraishi ◽  
Koichi Matsumoto

Sign in / Sign up

Export Citation Format

Share Document