Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua

2012 ◽  
Vol 24 (8) ◽  
pp. 1511-1518 ◽  
Author(s):  
Xuan Li ◽  
Manxi Zhao ◽  
Lanping Guo ◽  
Luqi Huang
2014 ◽  
Vol 65 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Sandra Radić Brkanac ◽  
Valerija Vujčić ◽  
Petra Cvjetko ◽  
Vid Baković ◽  
Višnja Oreščanin

Summary Leachates from active and closed municipal solid waste landfills can be a major source of contamination to groundwater and surface waters. In the present study the toxic and genotoxic potential of leachate from an old sanitary landfill prior to and following chemical and electrochemical treatments were assessed using Lemna, Allium, and comet tests. Photosynthetic pigments, malondialdehyde (indicator of lipid peroxidation) and antioxidant enzyme activities were evaluated as additional indicators of toxicity in duckweed. Following duckweed exposure to 25 % dilution of landfill leachate, growth rate and photosynthetic pigments content significantly decreased while lipid peroxidation increased despite stimulation of antioxidative defence mechanisms. Diluted leachate induced DNA strand breaks in duckweed cells as evidenced by the comet assay. Regarding the Allium test, untreated leachate caused inhibition of Allium cepa cell division and induction of mitotic and chromosomal aberrations. Although both water treatments completely reduced genotoxicity of leachate, the electrochemical method was found to be more efficient in removing toxic substances present in landfill leachate and thus more suitable for treating such leachates prior to their discharge into the environment. As landfill leachates pose a risk to human health and environment in general due to their (geno)toxicity, the present study demonstrates that the ecotoxicity/genotoxicity assays should be used in leachate risk assessment together with physicochemical analysis.


Author(s):  
I. Khomenko ◽  
O. Kosyk ◽  
N. Taran

Due to the aim the effect of pre-sowing treatment with a nonionic colloidal solution of the mix of copper, zinc, manganese and iron nanoparticles, cadmium ions and their combined action on the physiological and biochemical indices: the content of lipid peroxidation products and balance of photosynthetic pigments in green Lolo and red Lolo Ross varieties of Lactuca sativa L. was investigated. Spectrophotometric methods of investigating the content of peroxides, thiobarbiturate-active products (with use of the modified Kumar and Knowles method), as well as the content of the main photosynthetic pigments (chlorophyll a, b, a/b ratio, and the carotenoid content) with the Wintermans, de Mots calculations application were used. Due to the results, a decrease in the content of peroxides and growth of malonic dialdehyde was observed for most treatment variants of Lolo. The opposite tendency was observed for the Ross variety (the initial growth of these parameters under the nanoparticles influence decreased to the control during the fourteen-day exposure). The decrease of chlorophyll content was observed In the Lolo variety under the essential metal nanoparticles influence, in contrast to the action of cadmium.For the Ross variety, a significant reduction of both chlorophyll and carotenoid contents in all treatment types during exposure was calculated.The a/b-index for Lolo plants has significantly increased in variants of cadmium influence, for Ross plants the divergence of the influence of all treatment variants has been marked. As a result, the treatment with a mixture of essential nanometals showed additive stress-loading functions. It was observed in a growth of the level of lipid peroxidation products and the reduction of the photosynthetic pigment biomarkers in both varieties during the 0,1 mM cadmium exposure. The Lolo Ross variety showed a higher variability of results under different treatment, compared to the Lolo variety.


2014 ◽  
Vol 26 (3) ◽  
pp. 268-277 ◽  
Author(s):  
Andresa Lana Thomé Bizzo ◽  
Aline Chaves Intorne ◽  
Pollyana Honório Gomes ◽  
Marina Satika Suzuki ◽  
Bruno dos Santos Esteves

AIM: To evaluate, in a short-time exposure, the physiological responses of Salvinia auriculata Aubl. under different concentrations of Cu. METHODS: The plants were exposed to treatments with 0.01, 0.1, 1 and 10 mM of Cu in a period of 2 days. Then development variables of S. auriculata (weight, photosynthetic pigments, and soluble carbohydrate), lipid peroxidation (malondialdehyde, aldehydes, and electrolyte leakage) and production of antioxidants (anthocyanins, carotenoids, flavonoids, and proline) were evaluated. RESULTS: It was observed fresh weight reductions in concentrations above 1 mM of Cu. Chlorophyll a decreased with the increase of Cu concentrations unlike chlorophyll b. The ratio chlorophyll a / chlorophyll b was changed due to the degradation of photosynthetic pigments. The reductions of carotenoids were more pronounced than that of total chlorophyll. The values of electrolyte leakage ranged from 14 to 82 % and lipid peroxidation from 7 to 46 nmol.g-1. Flavonoids and soluble carbohydrates showed reductions with the increase of Cu concentration. Anthocyanins, phenolic compounds, and proline when subjected to 0.1 mM of Cu had increased, suggesting adaptability of plant stress caused directly by metal and reactive oxygen species. In higher concentrations, degradation and/or direct modifications of these molecules possibly occurred. CONCLUSIONS: The data suggest that S. auriculata is provided with an efficient mechanism against stress caused by Cu in the concentration of 0.1 mM. As for higher concentrations (1 and 10 mM), despite its role as micronutrients, Cu was toxic to the plant due to the redox behavior of this metal, which leads to the exacerbated formation of reactive oxygen species, inducing to severe damage such as biological membrane degradation and protein denaturation.


2021 ◽  
Vol 22 (16) ◽  
pp. 8856
Author(s):  
Agnieszka Siemieniuk ◽  
Michał Ludynia ◽  
Małgorzata Rudnicka

Among numerous contaminants, the ubiquitous occurrence of nonsteroidal anti-inflammatory drugs (NSAIDs) in the environment and their plausible harmful impact on nontarget organisms have made them one of the most important areas of concern in recent years. Crop plants can also potentially be exposed to NSAIDs, since the concentration of these pharmaceuticals is constantly rising in the surface water and soil. Our goal was to evaluate the stress response of two crop plants, maize and tomato, to treatment with selected NSAIDs, naproxen and diclofenac. The focus of the research was on the growth response, photosynthetic efficiency, selected oxidative stress factors (such as the H2O2 level and the rate of lipid peroxidation) as well as the total phenolic content, which represents the non-enzymatic protectants against oxidative stress. The results indicate that susceptibility to the NSAIDs that were tested is dependent on the plant species. A higher sensitivity of tomato manifested in growth inhibition, a decrease in the content of the photosynthetic pigments and a reduction in the maximum quantum efficiency of PSII and the activity of PSII, which was estimated using the Fv/Fm and Fv/F0 ratios. Based on the growth results, it was also possible to reveal that diclofenac had a more toxic effect on tomato. In contrast to tomato, in maize, neither the content of the photosynthetic pigments nor growth appeared to be affected by DFC and NPX. However, both drugs significantly decreased in maize Fv and Fm, which are particularly sensitive to stress. A higher H2O2 concentration accompanied, in most cases, increasing lipid peroxidation, indicating that oxidative stress occurred in response to the selected NSAIDs in the plant species that were studied. The higher phenolic content of the plants after NSAIDs treatment may, in turn, indicate the activation of defense mechanisms in response to the oxidative stress that is triggered by these drugs.


Author(s):  
Alexander S. Petukhov ◽  
◽  
Tatyana A. Kremleva ◽  
Galina A. Petukhova ◽  
Nikolay A. Khritokhin ◽  
...  

The purpose of this study was the investigation of lipid peroxidation products and photosynthetic pigment content in cells of herbs of various species in conditions of anthropogenic pollution of Tyumen. The material for the research was collected near different plants of Tyumen: metallurgical, engine, oil refinery, battery manufacturing as well as highway pollution. The following species of plants were analysed: coltsfoot (Tussilago farfara), red clover (Trifolium rubens), chamomile (Matricaria chamomilla) and wild vetch (Vicia cracca). Heavy metal concentration in soils of urban areas turned out to be elevated compared to background sites. Especially high heavy metal content was registered near metallurgical and battery manufacturing plants. Changes in photosynthetic pigment concentration turned out to be species-specific. An increase in photosynthetic pigments was obtained in chamomile cells, while in other plants oppression of photosynthetic apparatus was revealed. Concentration of lipid peroxidation cells of chamomile, meadow grass and wild vetch was increased compared to background site, while in coltsfoot and red clover it decreased. Heavy metal content in soils positively correlated with lipid peroxidation in plants. Oxidation stress in chamomile cells created energetic starvation, which was reflected in a positive correlation between photosynthetic pigments and the concentration of conjugated dienes in cells.


2018 ◽  
Vol 132 ◽  
pp. 120-127 ◽  
Author(s):  
Venkata L. Reddy Pullagurala ◽  
Ishaq O. Adisa ◽  
Swati Rawat ◽  
Sudhakar Kalagara ◽  
Jose A. Hernandez-Viezcas ◽  
...  

2017 ◽  
Vol 10 (1) ◽  
pp. 40-47
Author(s):  
EL-Saady Mohamed Ba ◽  
Khalid Ali Khalid ◽  
Amaal Abd-Elkhal ◽  
Mohammad Mahmoud Na

2021 ◽  
Vol 74 ◽  
Author(s):  
Lyudmyla Buyun ◽  
Roman Ivannikov ◽  
Lyudmila Batsmanova ◽  
Nataliya Taran ◽  
Lyudmyla Kovalska ◽  
...  

Abstract Guarianthe bowringiana is one of the oldest samples cultivated at NBG’s orchid unit glasshouses since 1970s. An efficient protocol for asymbiotic in vitro seed germination of G. bowringiana has previously been established. Given that acclimatization is a crucial step in micropropagation, this study assesses the structural adaptation and antioxidant response of G. bowringiana seedlings during ex vitro acclimatization to ex vitro conditions. The leaf surface micromorphology of the G. bowringiana juvenile plants propagated in vitro from seeds as well as the leaves of adult plants cultivated in glasshouse were analyzed using scanning electron microscopy. The levels of lipid peroxidation (TBARS level), superoxide dismutase (SOD) activity, and the photosynthetic activity were monitored for seven days from the transfer of seedlings from the in vitro cultivation vessels as they are markers indicating the response of the leaves of in vitro propagated G. bowringiana plants to oxidative stress during the early stages of acclimatization to ex vitro conditions. During the initial 2 days of the monitored acclimatization period (0–7 days), the level of photosynthetic pigments (chlorophyll a , b , and carotenoid content) increased, followed by an insignificant increase during the successive period (by the seventh day) of acclimatization. At the same time, the level of the tested antioxidant enzyme (SOD) exhibited an increasing trend throughout the acclimatization period. The SOD activities in the leaves of G. bowringiana seedlings were significantly affected when they were transferred from in vitro to ex vitro conditions due to drought stress. Thus, it was revealed that in the early stages of acclimatizing to the altered environments, G. bowringiana seedlings exhibited a rapid increase in photosynthetic pigments, superoxide dismutase activity, and lipid peroxidation levels after being transferred to ex vitro conditions. Comparison of the leaf micromorphologies of G. bowringiana plants grown under in vitro and those grown under ex vitro conditions revealed that leaf development had undergone significant changes during acclimatization to the altered conditions. In vitro to ex vitro transfer leads to a transient decrease in photosynthetic parameters.


Sign in / Sign up

Export Citation Format

Share Document