Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products

2014 ◽  
Vol 26 (6) ◽  
pp. 1294-1300 ◽  
Author(s):  
Athit Phetrak ◽  
Jenyuk Lohwacharin ◽  
Hiroshi Sakai ◽  
Michio Murakami ◽  
Kumiko Oguma ◽  
...  
2012 ◽  
Vol 12 (5) ◽  
pp. 630-636 ◽  
Author(s):  
A. Phetrak ◽  
J. Lohwacharin ◽  
N. Watanabe ◽  
M. Murakami ◽  
H. Sakai ◽  
...  

Four strong-base anion exchange resins (AERs) with different properties were selected to investigate dissolved organic matter (DOM) removal from river water containing inorganic anions. Rapid sand-filtered water was obtained from a water treatment plant in Tokyo, Japan, and then concentrated by an ultrafiltration membrane for use in ion exchange experiments to simulate high dissolved organic carbon (DOC) and sulfate conditions. AERs removed 23–50% of DOC and 70–80% of UV254 within 30 min despite high sulfate concentration (121 mg/L). Although the materials and structure of the AERs did not affect the reduction of UV254, DOC removal was affected. The highest DOC reduction was achieved by a macroporous polyacrylic AER (Purolite), while the macroporous polystyrene IRA 910 had the lowest DOC removal. A pseudo-second-order kinetic model showed that the rate constants and the initial sorption rates of polyacrylic resins were higher than those by polystyrene resins, suggesting that more hydrophilic structure of AERs exhibited faster DOC removal. Aromatic DOM with a molecular weight (MW) of 800–3,000 Da was almost completely removed by AERs, whereas only half of aromatic DOMs smaller than 800 Da were removed by AERs. Adsorbed DOC comprised less than 6% of all exchanged anions, whereas the adsorbed sulfate was about 90% due to comparatively high concentration of sulfate in the water sample.


2020 ◽  
Author(s):  
John Weatherill ◽  
Elena Fernandez-Pascual ◽  
Jean O'Dwyer ◽  
Elizabeth Gilchrist ◽  
Simon Harrison ◽  
...  

<p>Ireland has a far greater number of regulatory exceedances for trihalomethanes (THMs) in public water supplies than the next highest European Union member state. In Ireland, 82% of public water supplies originate from surface water catchments which require disinfection to inactivate pathogens and prevent the spread of waterborne diseases. Since the 1970s, it has been known that the use of chlorine for disinfection leads to the formation of potentially harmful disinfection byproducts (DBPs) of which some are suspected carcinogens. THMs are one prominent class of at least 700 potentially harmful disinfection byproducts (DBPs) produced after chlorination of dissolved organic matter (DOM) present in source water which is not removed prior to disinfection.</p><p>We introduce a new research project, funded by the Irish Environmental Protection Agency entitled PRODOM: PRoactive Optical monitoring of catchment Dissolved Organic Matter for drinking water source protection. The overall aim of the research is to develop an integrated catchment-level understanding of the spatiotemporal dynamics of DOM precursors and associated DBP formation risk. The project will explore the relationship between optically-active DOM precursors and laboratory formation potentials for key DBPs including emerging classes of potentially more harmful nitrogenous DBPs. Through high-resolution spatial sampling we will develop geospatial DBP formation risk maps and identify risk-driving point and diffuse precursor sources. We will evaluate the potential of state-of-the-art UV fluorescence sensor technology to act as an early warning tool for proactive management of source water at sub-catchment scale. Using high-frequency time series monitoring of fluorescent precursors, we will identify high-risk periods in the catchment hydrograph and evaluate critical precursor sources and pathways to inform a series of catchment management measures designed to reduce DBP formation risk. </p>


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 111
Author(s):  
Ariadi Hazmi ◽  
Maulana Yusup Rosadi ◽  
Reni Desmiarti ◽  
Fusheng Li

Rainwater is a potential source of drinking water, but has various components of dissolved organic matter (DOM). DOM is a reservoir of potential hazards in drinking water. Therefore, a new method is required to purify rainwater as a drinking water source in terms of DOM aspects. A radio-frequency (RF) treatment system is introduced here to purify source water with a small possibility of contamination. RF is generated by applying a frequency of 1.5 MHz through a glass reactor with a diameter of 2 mm which is wrapped by a 2 mm copper wire. The results demonstrate that UV260 value and dissolved organic carbon (DOC) are reduced during RF treatment. DOC was reduced by a lower amount compared to UV260, suggesting the partial transformation of bio-refractory DOM. A fluorescence excitation-emission matrix showed that humic-like substances in rainwater were reduced faster than protein-like ones, indicating that humic-like substances are susceptible to reduction by RF treatment. The results offer information on the use of RF treatment in a rainwater purification process for the production of drinking water.


2016 ◽  
Vol 551-552 ◽  
pp. 133-142 ◽  
Author(s):  
Hong-Ying Hu ◽  
Ye Du ◽  
Qian-Yuan Wu ◽  
Xin Zhao ◽  
Xin Tang ◽  
...  

1999 ◽  
Vol 40 (9) ◽  
pp. 207-214 ◽  
Author(s):  
J.-P. Croué ◽  
D. Violleau ◽  
C. Bodaire ◽  
B. Legube

The objective of this work was to compare the affinity of well characterized NOM fractions isolated from two surface waters with strong (gel matrix and macroporous matrix) and weak anion exchange resins (AER) using batch experiment conditions. The structural characterization of the fraction of NOM has shown that the higher the hydrophilic character, the lower the C/O atomic ratio, the lower the SUVA, the lower the aromatic carbon content and the lower the molecular weight. In general (not always), strong AER was more efficient to remove DOC than weak AER. For the same water source (Suwannee River), the higher the molecular weight of the NOM fraction, the lower the affinity with AER. Increasing the ionic strength favored the removal of the hydrophobic NOM fraction (“salting out” effect) while increasing the pH apparently reduced the removal of the hydrophilic NOM fraction. Results were discussed in terms of size exclusion, adsorption, anion exchange and also hydrophobic/hydrophilic repulsion.


Sign in / Sign up

Export Citation Format

Share Document