Distribution features of cuttings bed and sensitivity analysis of major drilling parameters for cuttings transport in gas drilling horizontal wells

2015 ◽  
Vol 27 (6) ◽  
pp. 884-893 ◽  
Author(s):  
Xiao-hua Zhu ◽  
Jing Yi ◽  
Qing-you Liu
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Mehmet Sorgun

In this study, simple empirical frictional pressure losses and cuttings bed thickness correlations including pipe rotation are developed for solid-liquid flow in horizontal and deviated wellbores. Pipe rotation effects on cuttings transport in horizontal and highly inclined wells are investigated experimentally. Correlations are validated experimental data with pure water as well as four different non-Newtonian fluids for hole inclinations from horizontal to 60 degrees, flow velocities from 0.64 m/s to 3.56 m/s, rate of penetrations from 0.00127 to 0.0038 m/s, and pipe rotations from 0 to 250 rpm. Pressure drop within the test section, and stationary and/or moving bed thickness are recorded besides the other test conditions. The new correlations generated in this study are believed to be very practical and handy when they are used in the field.


2013 ◽  
Vol 316-317 ◽  
pp. 842-845
Author(s):  
Xian Zhong Yi ◽  
Jun Feng Zhang ◽  
Sheng Zong Jiang

Cuttings transport of drilling and washing process in horizontal well is a typical two-phase (liquid-solid) or three-phase (gas-liquid-solid) flow phenomena. In this paper, it analyzes the flow characteristics of Huan 127-Lian H2 horizontal wellbore , then uses experimental method to study the behavior of the particle size distribution and the mechanics. This study provides an important way to master cuttings settling in fluid medium, it can explain how the cuttings bed is generated and cleared, and why the procession of cuttings of migration is stopped. In addition, measurement and analysis of drill cuttings is the basis erosion and abrasion analysis of BHA.


Author(s):  
Evren M. Ozbayoglu ◽  
Flavio Rodrigues ◽  
Reza Ettehadi ◽  
Roland May ◽  
Dennis Clapper

Abstract As explorations advance and drilling techniques become more innovative, complex and challenging trajectories arise. In consequence, cuttings transport has continued to be a subject of interest because, if the drilled cuttings cannot be removed from the wellbore, drilling cannot proceed for long. Therefore, efficient cleaning of highly inclined and horizontal wellbores is still among the most important problems to solve, because these types of wells require specialized fluid formulations and/or specific hole cleaning techniques. There are numerous studies and methods that focus in cuttings transportation in highly inclined and horizontal wells. One of them is the use of viscosity and density sweeps. Sweep pills have been used in the drilling industry as a tool to improve hole cleaning. This report presents the analysis of the performance of different sweeps pills working independently and in tandem in polymeric, oil and synthetic based systems and the comparison between them. The main objective of this project is to provide experimental evidence on which types of fluids perform better under certain conditions by studying the effect of viscosity and density in the bed erosion process in highly inclined and horizontal wells. In order to achieve that, several fluid formulations were tested at different inclination angles (90, 75, 60 degrees) in the Small Indoor Flow Loop property of The University of Tulsa’s Drilling Research Projects. The results of the tests are presented in terms of volume of drilled cuttings removed from the test section and measured differential pressures. All the tests were conducted under atmospheric pressure and ambient temperature. Moreover, a 2-Layer model is used for estimating the erosion performance of sweeps for design purposes, and the model estimations are compared with experimental results. From the experiments, it was identified that polymeric, oil and synthetic based muds with similar density and rheological properties eroded and transported the drilled cuttings similarly under similar test conditions. Furthermore, pumping the sweep pills in tandem demonstrated higher cuttings transport efficiency when compared with the sweep pills applied independently.


Author(s):  
Shihui Sun ◽  
Jinyu Feng ◽  
Zhaokai Hou ◽  
Guoqing Yu

Cuttings are likely to accumulate and eventually form a cuttings bed in the highly-deviated section, which usually lead to high friction and torque, slower rate of penetration, pipe stuck and other problems. It is therefore necessary to study cuttings transport mechanism and improve hole cleaning efficiency. In this study, the cuttings-transport behaviors with pipe rotation under turbulent flow conditions in the highly deviated eccentric section were numerically simulated based on Euler solid–fluid model and Realizable [Formula: see text]–[Formula: see text] model. The resulted numerical results were compared with available experimental data in reported literature to validate the algorithm, and good agreement was found. Under the conditions of drill string rotation, cuttings bed surface tilts in the direction of rotation and distributes asymmetrically in annulus. Drill string rotation, drilling fluid flow rate, cuttings diameter, cuttings injection concentration and drilling fluid viscosity affect the axial velocity of drilling fluid; whereas drilling fluid tangential velocity is mainly controlled by the rotational speed of drill string. Increase in value of drill string rotation, drilling fluid flow rate or hole inclination will increase cuttings migration velocity. Notably, drill string rotation reduces cuttings concentration and solid–fluid pressure loss, and their variations are dependent on inclination, cuttings injection concentration, cuttings diameter, drilling fluid velocity and viscosity. However, when a critical rotation speed is reached, no additional contribution is observed. The results can provide theoretical support for optimizing hole cleaning and realizing safety drilling of horizontal wells and extended reach wells.


Sign in / Sign up

Export Citation Format

Share Document