Simple Correlations and Analysis of Cuttings Transport With Newtonian and Non-Newtonian Fluids in Horizontal and Deviated Wells

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Mehmet Sorgun

In this study, simple empirical frictional pressure losses and cuttings bed thickness correlations including pipe rotation are developed for solid-liquid flow in horizontal and deviated wellbores. Pipe rotation effects on cuttings transport in horizontal and highly inclined wells are investigated experimentally. Correlations are validated experimental data with pure water as well as four different non-Newtonian fluids for hole inclinations from horizontal to 60 degrees, flow velocities from 0.64 m/s to 3.56 m/s, rate of penetrations from 0.00127 to 0.0038 m/s, and pipe rotations from 0 to 250 rpm. Pressure drop within the test section, and stationary and/or moving bed thickness are recorded besides the other test conditions. The new correlations generated in this study are believed to be very practical and handy when they are used in the field.

Author(s):  
Mehmet Sorgun ◽  
Jerome J. Schubert ◽  
Ismail Aydin ◽  
M. Evren Ozbayoglu

Flow in annular geometries, i.e., flow through the gap between two cylindrical pipes, occurs in many different engineering professions, such as petroleum engineering, chemical engineering, mechanical engineering, food engineering, etc. Analysis of the flow characteristics through annular geometries is more challenging when compared with circular pipes, not only due to the uneven stress distribution on the walls but also due to secondary flows and tangential velocity components, especially when the inner pipe is rotated. In this paper, a mathematical model for predicting flow characteristics of Newtonian fluids in concentric horizontal annulus with drill pipe rotation is proposed. A numerical solution including pipe rotation is developed for calculating frictional pressure loss in concentric annuli for laminar and turbulent regimes. Navier-Stokes equations for turbulent conditions are numerically solved using the finite differences technique to obtain velocity profiles and frictional pressure losses. To verify the proposed model, estimated frictional pressure losses are compared with experimental data which were available in the literature and gathered at Middle East Technical University, Petroleum & Natural Gas Engineering Flow Loop (METU-PETE Flow Loop) as well as Computational Fluid Dynamics (CFD) software. The proposed model predicts frictional pressure losses with an error less than ± 10% in most cases, more accurately than the CFD software models depending on the flow conditions. Also, pipe rotation effects on frictional pressure loss and tangential velocity is investigated using CFD simulations for concentric and fully eccentric annulus. It has been observed that pipe rotation has no noticeable effects on frictional pressure loss for concentric annuli, but it significantly increases frictional pressure losses in an eccentric annulus, especially at low flow rates. For concentric annulus, pipe rotation improves the tangential velocity component, which does not depend on axial velocity. It is also noticed that, as the pipe rotation and axial velocity are increased, tangential velocity drastically increases for an eccentric annulus. The proposed model and the critical analysis conducted on velocity components and stress distributions make it possible to understand the concept of hydro transport and hole cleaning in field applications.


2021 ◽  
pp. 1-18
Author(s):  
Mohammad Mojammel Huque ◽  
Syed Imtiaz ◽  
Sohrab Zendehboudi ◽  
Stephen Butt ◽  
Mohammad Azizur Rahman ◽  
...  

Summary Hole cleaning is a concern in directional and horizontal well drilling operations where drill cuttings tend to settle in the lower annulus section. Laboratory-scale experiments were performed with different non-Newtonian fluids in a 6.16-m-long, 114.3- × 63.5-mm transparent annulus test section to investigate cuttings transport behavior. This experimental study focused on understanding the cuttings transport mechanism in the annulus section with high-speed imaging technology. The movement of cuttings in the inclined annular section was captured with a high-speed camera at 2,000 frames/sec. Also, cuttings bed movement patterns at different fluid velocities and inner pipe rotations were captured with a digital single-lens reflex video camera. The electrical resistance tomography (ERT) system was used to quantify the cuttings volume fraction in the annulus. Different solid bed heights and cuttings movements were observed based on fluid rheology, fluid velocity, and inner pipe rotation. The mechanistic three-layer cuttings transport model was visualized with the experimental procedure. This study showed that solid bed height is significantly reduced with an increase in the inner pipe rotation. This study also identified that cuttings bed thickness largely depends on fluid rheology and wellbore inclination. The image from the high-speed camera identified a downward trend of some rolling particles in the annulus caused by gravitational force at a low mud velocity. Visual observation from a high-speed camera identified a helical motion of solid particles when the drillpipe is in contact with solid particles and rotating at a higher rev/min. Different cuttings movement patterns such as: rolling, sliding, suspension, helical movement, and downward movement were identified from the visualization of a high-speedcamera.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Mehmet Sorgun ◽  
A. Murat Ozbayoglu ◽  
M. Evren Ozbayoglu

The estimation of the pressure losses inside annulus during pipe rotation is one of the main concerns in various engineering professions. Pipe rotation is a considerable parameter affecting pressure losses in annulus during drilling. In this study, pressure losses of Newtonian and non-Newtonian fluids flowing through concentric horizontal annulus are predicted using computational fluid dynamics (CFD) and support vector regression (SVR). SVR and CFD results are compared with experimental data obtained from literature. The comparisons show that CFD model could predict frictional pressure gradient with an average absolute percent error less than 3.48% for Newtonian fluids and 19.5% for non-Newtonian fluids. SVR could predict frictional pressure gradient with an average absolute percent error less than 5.09% for Newtonian fluids and 5.98% for non-Newtonian fluids.


2021 ◽  
Author(s):  
Murat Ozbayoglu ◽  
Evren Ozbayoglu ◽  
Baris Guney Ozdilli ◽  
Oney Erge

Abstract Drilling practice has been evolving parallel to the developments in the oil and gas industry. Current supply and demand for oil and gas dictate search for hydrocarbons either at much deeper and hard-to-reach fields, or at unconventional fields, both requiring extended reach wells, long horizontal sections, and 3D complex trajectories. Cuttings transport is one of the most challenging problems while drilling such wells, especially at mid-range inclinations. For many years, numerous studies have been conducted to address modeling of cuttings transport, estimation of the concentration of cuttings as well as pressure losses inside the wellbores, considering various drilling variables having influence on the process. However, such attempts, either mechanistic or empirical, have many limitations due to various simplifications and assumptions made during the development stage. Fluid thixotropy, temperature variations in the wellbore, uncertainty in pipe eccentricity as well as chaotic motion of cuttings due to pipe rotation, imperfections in the wellbore walls, variations in the size and shape of the cuttings, presence of tool joints on the drillstring, etc. causes the modeling of the problem extremely difficult. Due to the complexity of the process, the estimations are usually not very accurate, or not reliable. In this study, data-driven models are used to address the estimation of cuttings concentration and frictional loss estimation in a well during drilling operations, instead of using mechanistic or empirical methods. The selected models include Artificial Neural Networks, Random Forest, and AdaBoost. The training of the models is determined using the experimental data regarding cuttings transport tests collected in the last 40 years at The University of Tulsa – Drilling Research Projects, which includes a wide range of wellbore and pipe sizes, inclinations, ROPs, pipe rotation speeds, flow rates, fluid and cuttings properties. The evaluation of the models is conducted using Root Mean Square Error, R-Squared Values, and P-Value. As the inputs of the data-driven models, independent drilling variables are directly used. Also, as a second approach, dimensionless groups are developed based on these independent drilling variables, and these dimensionless groups are used as the inputs of the models. Moreover, performance of the data-driven model results are compared with the results of a conventional mechanistic model. It is observed that in many cases, data-driven models perform significantly better than the mechanistic model, which provides a very promising direction to consider for real time drilling optimization and automation. It is also concluded that using the independent drilling variables directly as the model inputs provided more accurate results when compared with dimensional groups are used as the model inputs.


Author(s):  
Jie Zhang ◽  
Wen Luo ◽  
Cuinan Li ◽  
Tingyu Wan ◽  
Zhen Zhang ◽  
...  

Based on the special rheological model of foam fluid, the mathematical models of cuttings transport for stable foam drilling in vertical/near vertical sections, the transitional section, and inclined/horizontal sections are established in this paper. The effects of various flow parameters on the cuttings bed thickness in the annulus are analyzed. The results show that inclination, annulus velocity, foam flow rate, and eccentricity are key factors affecting cuttings transport. The thickness of a cuttings bed gradually decreases with the inclination decrease of the highly deviated/horizontal sections. When the inclination is reduced to approximately 60°, the dynamic and static cuttings bed disappears and is substituted by the glide lamella, which consists of cuttings grains. Cuttings grains have various forms of movement on the lower borehole wall. When the inclination is reduced to below 30°, the cuttings are brought out of the well by the stable foam if the returning velocity of the annulus foam is larger than the depositing velocity of the cuttings. The thickness of the cuttings bed gradually decreases with the increase of annulus velocity. The increased foam quality reduces the concentration of annulus cuttings when the annulus velocity is constant and when it reaches a stable status earlier than the foam drilling fluid of lower foam quality. However, the concentration of the annulus cuttings at the final stage is constant. The thickness of the cuttings bed increases with increased eccentricity of the drill stem. When the eccentricity is large, the change of eccentricity has a high effect on the cuttings bed thickness.


2020 ◽  
Vol 12 ◽  
Author(s):  
Nihar Ranjan Biswal

Background: Surfactant adsorption at the interfaces (solid–liquid, liquid–air, or liquid–liquid) is receiving considerable attention from a long time due to its wide range of practical applications. Objective: Specifically wettability of solid surface by liquids is mainly measured by contact angle and has many practical importances where solid–liquid systems are used. Adsorption of surfactants plays an important role in the wetting process. The wetting behaviours of three plant-based natural surfactants (Reetha, Shikakai, and Acacia) on the glass surface are compared with one widely used nonionic synthetic surfactant (Triton X-100) and reported in this study. Methods: The dynamic contact angle study of three different types of plant surfactants (Reetha, Shikakai and Acacia) and one synthetic surfactant (Triton X 100) on the glass surface has been carried out. The effect of two different types of alcohols such as Methanol and amyl alcohol on wettability of shikakai, as it shows little higher value of contact angle on glass surface has been measured. Results: The contact angle measurements show that there is an increase in contact angle from 47° (pure water) to 67.72°, 65.57°, 68.84°, and 68.79° for Reetha, Acacia, Shikakai, and Triton X-100 respectively with the increase in surfactant concentration and remain constant at CMC. The change in contact angle of Shikakai-Amyl alcohol mixtures are slightly different than that of methanol-Shikakai mixture, mostly there is a gradual increase in contact angle with the increasing in alcohol concentration. Conclusion: There is no linear relationship between cos θ and inverse of surface tension. There was a linear increase in surface free energy results with increase in concentration as more surfactant molecules were adsorbing at the interface enhancing an increase in contact angle.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


2013 ◽  
Vol 471 ◽  
pp. 59-63
Author(s):  
Mohd Noor Arib Rejab ◽  
Roslan Abd Rahman ◽  
Raja Ishak Raja Hamzah ◽  
Jawaid Iqbal Inayat Hussain ◽  
Nazirah Ahmad ◽  
...  

This paper presents an evaluation on elastomeric mount used to isolate vibration from powertrain to chassis or structure vehicle. The assessments started with measurement of noise inside compartment, and exhaust noise. This is followed by the measurement of vibration on both sides of elastomeric mounts. The noise in the compartment and exhaust noise is measured according to BS 6086: 1981 and BS ISO 5130: 2007. The noise in the compartment and vibration is tested in three conditions. Firstly, engine is run-up with load (driving at second gear); secondly, without load; and thirdly, without load but hanging. A microphone is fixed at the ear of the mannequin. The fast response and A weighting sound level meter were used for measurement noise in the compartment and exhaust noise. The vibration is measured in terms of acceleration on both sides of each elastomeric powertrain mounts. Two accelerometer transducers are fixed on both sides of powertrain elastomeric mounts. One side was identified as a source of vibration and the other as receiver of vibrations. The results showed that the pattern of overall vibration level on source and receiver increased from 1050 RPM (idling) to 4000 RPM on all test conditions. Vibration transmitted to chassis or receiver structure was analyzed using transmissibility concept. By evaluating test condition of engine run-up without load, informed that the front and rear mounts showed a high level transmissibility contributing to structure-borne noise.


1988 ◽  
Vol 27 (7) ◽  
pp. 1246-1259 ◽  
Author(s):  
Pyare Lal ◽  
Satendra Kumar ◽  
Siddh N. Upadhyay ◽  
Yogendra D. Upadhya

Sign in / Sign up

Export Citation Format

Share Document