Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing

2013 ◽  
Vol 23 (5) ◽  
pp. 1275-1280 ◽  
Author(s):  
A. DEVARAJU ◽  
A. KUMAR ◽  
B. KOTIVEERACHARI
2019 ◽  
Vol 813 ◽  
pp. 404-410
Author(s):  
Hardik Vyas ◽  
Kush P. Mehta

In the present investigation, friction stir processing (FSP) is carried out with multi pass processing having 100 % overlap zone on the workpiece material of aluminum alloy 6061 with constant FSP parameters and varying multi pass processing conditions. Novel processing concept of multi pass FSP was performed with different rotation directions (such as clock wise and anti-clock wise directions) and processing directions (such as forward, reverse and revert directions). Surface inspection, macrographs and microstructures of the processed regions are evaluated and compared with each other. Multi-pass FSP with 100 % overlapping of two passes caused intense dynamic recrystallization and resulted in reduced grain size. Hardness of processed zone was found increased in case of two pass FSP. Minimum tensile strength was reported with double sided FSP compare to single pass and two pass FSPs. No major variations in tensile strength were reported in case of single pass and two pass FSPs.


Author(s):  
Murahari Kolli ◽  
Devaraj Aruri ◽  
Kumar Adepu

Aluminum based hybrid composites are advanced materials having the properties of high hardness, superior wear resistance, strength, high elevated temperature and low thermal expansion coefficient. These hybrid composites are widely used in industries like automobile and aerospace. In this present paper 6061-T6 Aluminum alloy reinforced with SiC and Gr particles, hybrid composites are fabricated by using Friction stir processing (FSP) technique. It prevents the further development of hybrid composites for machining by nonconventional methods like water jet and laser cutting process. Electrical discharge machining (EDM) is used for machining the complex shapes of the material. This paper presents an overview of EDM studies conducted on the Al-SiC/Gr hybrid composites using a copper electrode in EDM. The EDM experiment machining parameters such as the dielectric fluid, peak current, pulse on, pulse off times are changed to explore their effects on machining performance, material removal rate (MRR), Tool wear rate (TWR), and surface roughness (SR). It is observed that the MRR and SR of the Al-SiC/Gr hybrid composites increase with an increase in the current.


Author(s):  
A. Kumar ◽  
A. Devaraju ◽  
B. Kotiveerachari

In this investigation, the influence of tool rotational speed on wear and mechanical properties of Aluminum alloy based surface hybrid composites fabricated via Friction stir processing (FSP) was studied. The fabricated surface hybrid composites have been examined by optical microscope for dispersion of reinforcement particles. Microstructures of all the surface hybrid composites revealed that the reinforcement particles (SiC, Gr and Al2O3) are uniformly dispersed in the nugget zone. It is observed that the microhardness is decreased with increasing the rotational speed and exhibited higher microhardness value in Al-SiC/Al2O3 surface hybrid composite at a rotational speed of 900 rpm, due to presence and pining effect of hard SiC and Al2O3 particles. It is also observed that high wear resistance exhibited in the Al-SiC/Gr surface hybrid composites at a rotational speed of 900 rpm due to presence of SiC and Gr acted as load bearing elements and solid lubricant respectively. The observed wear and mechanical properties have been correlated with microstructures and worn morphology.


Author(s):  
Xun Liu ◽  
Shuhuai Lan ◽  
Jun Ni

Friction stir welding (FSW) technique has been successfully applied to butt joining of aluminum alloy 6061-T6 to one type of advanced high strength steel (AHSS), transformation induced plasticity (TRIP) 780/800 with the highest weld strength reaching 85% of the base aluminum alloy. Mechanical welding forces and temperature were measured under various sets of process parameters and their relationships were investigated, which also helped explain the observed macrostructure of the weld cross section. Compared with FSW of similar aluminum alloys, only one peak of axial force occurred during the plunge stage. Three failure modes were identified during tensile tests of weld specimens, which were further analyzed based on the microstructure of joint cross sections. Intermetallic compound (IMC) layer with appropriate thickness and morphology was shown to be beneficial for enhancing the strength of Al–Fe interface.


Sign in / Sign up

Export Citation Format

Share Document