A new perspective on the selection of test plants for evaluating the host-specificity of weed biological control agents: the case of Deuterocampta quadrijuga, a potential insect control agent of Heliotropium amplexicaule

2002 ◽  
Vol 25 (3) ◽  
pp. 273-287 ◽  
Author(s):  
D.T Briese ◽  
A Walker
2010 ◽  
Vol 3 (4) ◽  
pp. 429-439 ◽  
Author(s):  
Brian G. Rector ◽  
Alessio De Biase ◽  
Massimo Cristofaro ◽  
Simona Primerano ◽  
Silvia Belvedere ◽  
...  

AbstractAn open-field test was conducted in southern France to assess the host-specificity of Ceratapion basicorne (Illiger), a candidate for biological control of yellow starthistle. Test plants were infested by naturally occurring populations of C. basicorne but were also exposed to sympatric herbivore species, including other Ceratapion spp. Insects from the test plants were collected directly into tubes of ethanol and were subsequently identified to species according to DNA sequence similarity with morphologically identified reference specimens. This integrated, morphological and molecular identification method was used in an effort to maximize the amount of data gained in the field bioassay and to minimize the number of taxonomist–hours necessary to complete the study. The results obtained showed that the French C. basicorne population only attacked yellow starthistle and cornflower, another known host of C. basicorne. Molecular phylogenetic analysis of the insects collected from all other nonhost plants rejected the possibility that any were C. basicorne.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Nehalem C. Breiter ◽  
Timothy R. Seastedt

Toadflax invasion into natural areas has prompted interest in weed management via biological control. The most promising biological control agent currently available for the control of Dalmatian toadflax is Mecinus janthinus, a stem-boring weevil that has been shown to significantly reduce toadflax populations. Some land managers, however, are reluctant to release approved weed biological control agents based on concerns about possible nontarget impacts. Few postrelease examinations of biocontrol impact and host specificity have been performed, despite the call for such information. This study examined the host specificity of Mecinus janthinus, postrelease, in relation to Colorado sites to provide information to managers about its relative safety as a weed biological control agent. This study employed three components: (1) greenhouse choice and no-choice experiments; (2) no-choice caged field experiments; and (3) release-site evaluation of nontarget use of native plant species where this weevil has been released and has established. Both greenhouse and field experiments failed to demonstrate nontarget use of native plant species by M. janthinus in the region where it was studied, even in no-choice starvation tests. We found no evidence of nontarget herbivory on native plants growing at toadflax sites where M. janthinus was well established. These results support the continued use of M. janthinus as a low-risk biological control agent for the management of toadflax in the Rocky Mountain Front Range.


1982 ◽  
Vol 72 (3) ◽  
pp. 523-533 ◽  
Author(s):  
M. J. W. Cock

AbstractLiothrips mikaniae (Priesn.) comb. n. is one of the most promising biological control agents for Mikania micrantha, a sprawling composite vine native to the Neotropics which is a serious weed of plantations in South-East Asia. A description and illustrations of the adult and larvae of this thrips is followed by details of the life-history, culture technique, host specificity (including laboratory studies demonstrating oligophagy) and natural enemies. It is recommended for introduction to South-East Asia.


2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


Sign in / Sign up

Export Citation Format

Share Document