Failure of stainless steel water pump couplings

2001 ◽  
Vol 8 (2) ◽  
pp. 189-199 ◽  
Author(s):  
C.R Gagg
Keyword(s):  
2018 ◽  
Vol 159 ◽  
pp. 02027 ◽  
Author(s):  
Abdul Hamid ◽  
Sri Nugroho ◽  
Gunawan Dwi Haryadi ◽  
Khaeroman

Pump shafts are generally exposed to the liquid being pumped either on a continual basis or at certain locations along the length of the shaft. The shaft material is austenitic stainless steel, description ASTM AU 79 TY 316. The purpose of this study is to determine the failure of the water pump shaft used in the power plant. Metallography is the study of structure metal shaft can used as a means for CWP metal pelleting (Circulating Water Pump), for the purpose of damaged or deeply degraded areas. SEM test is used to know the beginning of the crack (crack initiation). EDS test is used to chemical composition and Vikers hardness test is also used to know the hardness material. These three tests to support in analyzing the failure of the pump shaft. The conclusion of this failure analysis is the shaft material has porosity. Fatigue cracking comes from the outer surface area.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
H. Tabaei ◽  
M. Ameri

In this work, the experimental results of a designed and installed photovoltaic water pump system with static concentrator are presented. The tests have been conducted in outdoor condition in Kerman (Latitude 30 deg 17′ and longitude 57 deg 50′), Iran. The performance of photovoltaic water pumping system is evaluated for both stainless steel 304 and aluminum foil reflectors. Through this study, it is found that the performance of the photovoltaic (PV) water pumping system was improved by using these two types of reflectors; but results show that aluminum foil reflector is more efficient than stainless steel 304 reflector. Measurements indicate that output power from the PV panels can be increased in the order of 14% and 8.5% due to the use of aluminum foil and stainless steel 304 reflectors, respectively.


2021 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Selvi Ariyunita ◽  
Yeny Dhokhikah ◽  
Wachju Subchan

Microplastics are harmful to the ecosystem and need to solve immediately. Detection of microplastic contamination is the first step to reduce plastics pollution. Estuarine in Puger has a high potential for microplastic pollution related to the multifunction of waters as ports, tourism, fish market, fish processing, and human settlements. However, there are no studies related to microplastic contamination in the area. The objectives of this research were to determine microplastic contamination in the estuarine located in Puger District, Jember Regency, Indonesia. The research results were the first evidence to inform the society and local government about the actual condition of plastic pollution, especially in the aquatic ecosystem. The sampling sites were determined by purposive sampling. Fifty liters of water from each station (with three repetitions) were taken using a 24V water pump and then filtered using stainless steel filter (mesh 5 mm and 0.2 mm). The filtered samples were placed in a sterile bottle sample, stored at 4 ± 20C. Microplastics were counted and categorized according to size, color, and type under a microscope stereo. Microplastic abundance was calculated based on the number of microplastic particles identified per liter of sample water (particle/liter). The result showed that the study area was contaminated by microplastics throughout site sampling, with abundances varying from 0.03 particles/liter to 0.19 particles/liter. The highest microplastic abundance found near the fishery market. The microplastics also vary in size, color, and type. According to characterization, the sources of microplastic contamination come from human-based activities.


2017 ◽  
Vol 82 ◽  
pp. 466-473 ◽  
Author(s):  
A. Vazdirvanidis ◽  
G. Pantazopoulos ◽  
A. Rikos

Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
R. Gonzalez ◽  
L. Bru

The analysis of stacking fault tetrahedra (SFT) in fatigued metals (1,2) is somewhat complicated, due partly to their relatively low density, but principally to the presence of a very high density of dislocations which hides them. In order to overcome this second difficulty, we have used in this work an austenitic stainless steel that deforms in a planar mode and, as expected, examination of the substructure revealed planar arrays of dislocation dipoles rather than the cellular structures which appear both in single and polycrystals of cyclically deformed copper and silver. This more uniform distribution of dislocations allows a better identification of the SFT.The samples were fatigue deformed at the constant total strain amplitude Δε = 0.025 for 5 cycles at three temperatures: 85, 293 and 773 K. One of the samples was tensile strained with a total deformation of 3.5%.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Sign in / Sign up

Export Citation Format

Share Document