Modelling of interfacial effects on the mechanical properties of fibre-reinforced composites

1998 ◽  
Vol 29 (9-10) ◽  
pp. 1035-1048 ◽  
Author(s):  
H. Mahiou ◽  
A. Béakou
2018 ◽  
Vol 7 (2) ◽  
pp. 110-112
Author(s):  
Sasikumar Gnanasekaran ◽  
Sivasangari Ayyappan

Natural fibres namely sisal, jute, kenaf, hemp, abaca and banana are mainly used in industries for developing Natural fibres composites. They find many applications such as automobiles, furniture, packing and construction due to many merits such as their low cost, good mechanical properties, non-toxic, low weight, less damage to processing equipment, improved surface finish, abundant and renewable resources. The objective of this paper is to review the applications of various kenaf fibre reinforced polymer composites which will provide a base for further research in this area.


2021 ◽  
Vol 2021 ◽  
pp. 102-108
Author(s):  
J. Domenech-Pastor ◽  
P. Diaz-Garcia ◽  
D. Garcia

Composites are materials formed by the combination of two or more components that acquire better properties than the ones obtained by each component on its own. Composites have been widely used in the industry due to its light weight and good mechanical properties. To improve these properties several layers of reinforced material (e.g., carbon fibre) are overlapped which produce an increase in the fibre consumption. In this sense Tailored Fibre Placement (TFP) embroidery can offer good opportunity to reduce the consumption of reinforced fibre while improving the mechanical properties due to the alignment of the fibres in the effort direction. This study analyzes the performance of carbon fibre reinforced composites with Polyester resin made with TFP embroidery technology against flexural strength efforts and without using plain woven fabrics to demonstrate that the use of reinforcement fabrics in composites can be optimized by a curved alignment of the fibers. Two different structures were embroidered with TFP technology, one simulating a woven fabric with straight unidirectional alignment of fibres in horizontal and vertical direction, and a second structure made with curvilinear alignment of carbon fibers. After the study of the flexural mechanical properties an improvement of 18% was obtained in maximum flexural strength.


2002 ◽  
Vol 74 (4) ◽  
pp. 601-628 ◽  
Author(s):  
D. R. Moore ◽  
A. J. Cervenka

Characterization of continuous fiber-reinforced composites is examined in terms of processing, properties, and structure. Five processing and five property topics are then examined in terms of reviewing some of the historic background in these areas with the aim of identifying current issues and requirements for the future. The topics covered in the processing section are: polymeric matrix, impregnation, interfacial effects, residual stresses, and pre-preg tack. In the mechanical properties section the topics are: choice of standard, recycling and reusability, durability, environmental strength, and toughness. The paper provides a ten-point plan for future requirements.


1996 ◽  
Vol 127-131 ◽  
pp. 575-582
Author(s):  
Eckhard Pippel ◽  
J. Woltersdorf ◽  
A. Feldhoff ◽  
A. Hähnel

2014 ◽  
Vol 591 ◽  
pp. 7-10 ◽  
Author(s):  
V. Santhanam ◽  
M. Chandrasekaran

Natural fibre reinforced composites have attracted the attention of research community mainly because they are turning out to be an alternative to synthetic fibre. Various natural fibres such as jute, sisal, palm, coir and banana are used as reinforcements. In this paper, banana fibres and glass fibres have been used as reinforcement. Hybrid epoxy polymer composite was fabricated using chopped banana/glass fibre and the effect of alkali treatment was also studied. It is found that the alkali treatment improved the mechanical properties of the composite.


Sign in / Sign up

Export Citation Format

Share Document