Effect of Surface Treatment on the Mechanical Properties of Banana-Glass Fibre Hybrid Composites

2014 ◽  
Vol 591 ◽  
pp. 7-10 ◽  
Author(s):  
V. Santhanam ◽  
M. Chandrasekaran

Natural fibre reinforced composites have attracted the attention of research community mainly because they are turning out to be an alternative to synthetic fibre. Various natural fibres such as jute, sisal, palm, coir and banana are used as reinforcements. In this paper, banana fibres and glass fibres have been used as reinforcement. Hybrid epoxy polymer composite was fabricated using chopped banana/glass fibre and the effect of alkali treatment was also studied. It is found that the alkali treatment improved the mechanical properties of the composite.

2018 ◽  
Vol 144 ◽  
pp. 02011
Author(s):  
Vithal Rao Chavan ◽  
K. R. Dinesh ◽  
K. Veeresh ◽  
Veerabhadrappa Algur ◽  
Manjunath Shettar

Composite materials for the most part depicted as the mixes of two or more materials that outcome in the unmistakable properties than that of guard materials. Fibre strengthened plastics have been all around utilized for get-together flying machine and transport key parts as a delayed consequence of their specific mechanical and physical properties, for example, high particular quality and high particular robustness. Another pertinent application for fibre maintained polymeric composites (particularly glass fibre strengthened plastics) is in the electronic business, in which they are utilized for passing on printed wiring sheets. The utilization of polymer composite materials is winding up being powerfully essential. The present work delineates the change and mechanical portrayal of new polymer composites including glass fibre fortress, epoxy and maple cellulose fibre. The starting late made composites are delineated for their mechanical properties. The composite spreads were set up by utilizing hand layup framework. The experiments were conducted on and studied the effect of post curing on hybrid composites. The result reveals that the samples only with natural fibre have more promising results compared with synthetic fibre. The synthetic fibres get wrinkled due to post curing were as no such visuals in the natural fibres.


2020 ◽  
pp. 002199832097681
Author(s):  
DKK Cavalcanti ◽  
MD Banea ◽  
JSS Neto ◽  
RAA Lima

In this work, a comparative analysis of the mechanical and thermal properties of polyester and epoxy single and hybrid natural fibre-reinforced composites was performed. Pure jute, jute + curauá and jute + sisal composites with two distinct thermoset polymer resins (an epoxy and a polyester) were produced. Tensile, flexural and impact tests were carried out, in accordance to ASTM standards, to investigate and compare the mechanical properties of the composites as a function of matrix and hybridization. In addition, a thermogravimetric analysis (TGA) was used to complete the comparative analysis of the thermal properties. Finally, a scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. It was found that the hybridization process improved the mechanical properties of the non-hybrid jute fibre based composites for both matrices used. The resin used as matrix plays an important role on the mechanical properties of the composites. The epoxy matrix based composites presented higher tensile strength, while the polyester based composites presented higher tensile and flexural stiffness as well as higher impact energy, when compared to the epoxy-based composite. TGA analysis showed that the thermal stability of epoxy-based composites was higher compared to the polyester-based composites.


2016 ◽  
Vol 851 ◽  
pp. 155-162 ◽  
Author(s):  
Nurul Zuhairah Mahmud Zuhudi ◽  
Krishnan Jayaraman ◽  
Richard Lin

Hybridisation is introduced as one way to use bamboo fabric as natural fibre reinforced composites (NFRCs). The research intends to determine the extent to which bamboo fabric can replace glass fibre in glass polypropylene (GPP) composites and whether the proposed hybrids are capable of competing, particularly in comparison to the flammability of GPP composites. This study evaluates the effect of hybridization on the flammability properties of bamboo fabric reinforced polypropylene composites and their hybrids. Flammability tests using cone calorimeter show that the peak Heat Release Rate (HRR) was reduced up to 39% for BPP50%, at 511.8 kW/m2, in comparison with that of neat PP, based on maximum peak values of 842 kW/m2. Interestingly, in the hybrid composites, the peak HRR reduced as glass fibre was replaced with bamboo fibre. These composites demonstrate a significant decrease in peak HRR, over 30% less than the neat PP and GPP composites respectively. These results indicate that a significant portion of the glass in GPP may be replaced with bamboo fabric, with a positive effect on fire resistance. This reduction in flammability and the improved properties obtained demonstrate promise for these hybrid materials in future applications.


2017 ◽  
Vol 25 (3) ◽  
pp. 221-224 ◽  
Author(s):  
G. Yuvaraj ◽  
Hemanth Kumar ◽  
G. Saravanan

In this work the variation of mechanical properties like tensile, impact and chemical resistance properties of randomly oriented sisal/glass fibre reinforced hybrid composites with different fibre ratios (50:50,45:55,40:60,30:70) was studied. Hand lay up method is used for making the composites with epoxy resin. The result shows that increase in chemical, impact properties of composites with increase in fibre loading. Also it was observed that significant improvement in tensile properties of hybrid composites by alkali treatment.


2017 ◽  
Vol 37 (9) ◽  
pp. 879-895 ◽  
Author(s):  
Agnivesh Kumar Sinha ◽  
Harendra K. Narang ◽  
Somnath Bhattacharya

Abstract Extensive efforts have been made in the last decade for the development of natural fibre composites. This development paved the way for engineers and researchers to come up with natural fibre composites (NFCs) that exhibit better mechanical properties. The present review is based on the mechanical properties of jute, abaca, coconut, kenaf, sisal, and bamboo fibre-reinforced composites. Before selecting any NFC for a particular application, it becomes necessary to understand its compatibility for the same, which can be decided by knowing its mechanical properties such as tensile, flexural, and impact strengths. This review paper emphasises on the factors influencing the mechanical properties of NFCs like the type of matrix and fibre, interfacial adhesion, and compatibility between matrix and fibre. Efforts are also made to unveil the research gaps from the past literatures, as a result of which it is inferred that there is very limited work published in the field of vibration incorporating potential fillers such as red mud and fly ash with NFCs.


2012 ◽  
Vol 44 (2) ◽  
pp. 85-140 ◽  
Author(s):  
Manik Bhowmick ◽  
Samrat Mukhopadhyay ◽  
Ramasamy Alagirusamy

2011 ◽  
Vol 471-472 ◽  
pp. 686-691 ◽  
Author(s):  
I.N. Hanifawati ◽  
M.A. Azmah Hanim ◽  
S.M. Sapuan ◽  
E.S. Zainuddin

Natural fibre-based thermoset composites are generally lower in strength performance compared to synthetic thermoset composites. Hybridization with some amount of synthetic fibre enhanced the mechanical properties of the composites. This study focused on the performance of mechanical properties of hybrid banana/glass fibre reinforced polyester composites. Hybrid composites with different volume ratios of banana to glass fibre were prepared. The reinforcing effect of both fibres in polyester is also evaluated in various fibre loadings. Results showed that both flexural and tensile properties have been improved with the increasing level of overall fibre content loading. Tensile and flexural strength shows great enhancement by the introduction of a slight amount of glass fibre to the banana fibre polyester matrix.


Sign in / Sign up

Export Citation Format

Share Document