Valmet invests in filter fabric production in India

2021 ◽  
Vol 2021 (7) ◽  
pp. 14
Author(s):  
V.A. Rafienko

The publication represents a review of three major types of filter-fabrics which are actively applied by domestic industrial enterprises. It's specially noted that contemporary high-technological manufacturing is impossible without highquality materials. The domestic technologies on filter-fabric production deserve attention unconditionally. Nevertheless, together with modernization of domestic industrial production, the technologies on filter-fabric accumulation have to change also. Namely that's why the functioning of such enterprises, which lean on competitive ability principles, product quality and its high technology, is utterly important now. In this regard, it represents an interest the activity of research-production enterprise Filter-Fabrics (RPE Filter-Fabrics Ltd) where from 2013, there has been started the manufacturing of innovational products which basis on, polyamide mini-thread and filament (complex) thread from high-test polyamide with glass filler which is stable to abrasion and having lower shrinkage during exploitation in the liquid medium. Besides, RPE Filter-Fabrics Ltd has significantly expanded filter-fabric market by the way of correction of thread basis and weft that has allowed to introduce the production on many concentrating factories.


2021 ◽  
pp. 004051752110062
Author(s):  
Weiran Qian ◽  
Xiang Ji ◽  
Pinghua Xu ◽  
Laili Wang

Recycled polyester textile fibers stemming from waste polyester material have been applied in the textile industry in recent years. However, there are few studies focusing on the evaluation and comparison of the environmental impacts caused by the production of virgin polyester textiles and recycled polyester textiles. In this study, the carbon footprint and water footprint of virgin polyester textiles and recycled polyester textiles were calculated and compared. The results showed that the carbon footprint of the virgin polyester textiles production was 119.59 kgCO2/100 kg. Terephthalic acid production process occupied the largest proportion, accounting for 45.83%, followed by polyester fabric production process, ethylene production process, paraxylene production process, ethylene glycol production process and polyester fiber production process. The total carbon footprint of waste polyester recycling was 1154.15 kgCO2/100 kg, approximately ten times that of virgin polyester textiles production. As for the water footprint, it showed that virgin polyester fabric production and recycled polyester fabric production both had great impact on water eutrophication and water scarcity. Chemical oxygen demand caused the largest water eutrophication footprint, followed by ammonia-nitrogen and five-day biochemical oxygen demand. The water scarcity footprint of virgin polyester fabric production and recycled polyester fabric production was 5.98 m3 H2Oeq/100 kg and 1.90 m3 H2Oeq/100 kg, respectively. The comprehensive evaluation of carbon footprint and water footprint with the life cycle assessment polygon method indicated that the polyester fabric production process exhibited greater environmental impacts both for virgin polyester and recycled polyester.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4305
Author(s):  
Takamasa Terada ◽  
Masahiro Toyoura ◽  
Takahide Sato ◽  
Xiaoyang Mao

In this work, we propose a fabric electrode with a special structure that can play the role of a noise reduction filter. Fabric electrodes made of the conductive fabric have been used for long-term ECG measurements because of their flexibility and non-invasiveness; however, due to the large impedance between the skin and the fabric electrodes, noise is easily introduced into the ECG signal. In contrast to conventional work, in which chip-type passive elements are glued to the electrode to reduce noise, the proposed electrode can obtain a noise-reduced ECG by changing the structure of fabric. Specifically, the proposed electrode was folded multiple times to form a capacitor with a capacitance of about 3 nF. It is combined with the skin-electrode impedance to form a low-pass filter. In the experiment, we made a prototype of the electrodes and measured ECG at rest and during EMG-induced exercise. As a result, the SNR values at rest and during exercise were improved about 12.02 and 10.29 , respectively, compared with the fabric electrode without special structure. In conclusion, we have shown that changing the fabric electrode structure effectively removes noise in ECG measurement.


1990 ◽  
Vol 27 (6) ◽  
pp. 426-429
Author(s):  
TJ Golesworthy ◽  
RJ Pragnell

Author(s):  
Dulce Maria Holanda Maciel ◽  
Luísa Córdova Wandscheer ◽  
Daniela Novelli

Thinking about innovations that reduce environmental impact and offer quality consumer goods is a way of proposing a future scenario governed by eco-efficiency values. Through an exploratory bibliographic and documentary research, which qualitatively analyses Kombucha authors and fermenters, this article seeks to identify the relationship between biomimetics and bacterial fabric production as an eco-efficient product in the fashion market chain. The general objective of this case study is to explain the fermentation process to encourage the search for raw materials inserted in the sustainability proposal.


2020 ◽  
Vol 5 (2) ◽  
pp. 446-452
Author(s):  
Ruslan R ◽  
Agrippina Wiraningtyas ◽  
Ahmad Sandi ◽  
Muhammad Nasir

The "Nari-Nari" Weaving Village in Rabadompu Timur Village, Bima City, is a community group engaged in the weaving industry which has been carried on for generations. During this time, Bima woven fabric products use yarn raw material that has been colored using synthetic dyes. Yarn with synthetic dyes has a more diverse color, the fabric coloring process is easier and the cost is cheap, but synthetic dyes are carcinogenic and harmful to the environment. The solution to the problems faced by using natural dyes obtained from plants. This activity aims to train the Nari-Nari weaving group in yarn coloring using natural dyes. The method used is training through several stages of the activity namely the stage of socialization of activities; the training stage of yarn dyeing and woven fabric production. The dyes used are yellow wood extract and mahogany wood. The results obtained in this activity are the colored yarn has a different color based on the extract of the dye and fixation material. In yellow wood obtained with a maroon red color on alum, black on tunjung and reddish beige on lime. In mahogany wood is obtained beige on alum, black gray on tunjung and beige on lime.  


2018 ◽  
Vol 89 (6) ◽  
pp. 1094-1104 ◽  
Author(s):  
Juyeon Han ◽  
Euijin Shim ◽  
Hye Rim Kim

This study aims to compare different conditions in the three-step (cultivation, washing, and bleaching) production of white bacterial cellulose (BC) fabric to introduce it as a new type of fabric in the textile industry. The BC fabric was evaluated on the basis of its surface morphology and chemical structure. The “production BC” after the cultivation step was cultured using glucose as the carbon source in the Hestrin–Schramm (HS) medium. It was produced with the highest production yield (33.2 ± 6.85%), the highest thickness (0.35 ± 0.09 mm), and the flattest surface (211 nm). The bacteria remaining on “washed BC” after the washing step were washed out using 3% NaOH solution, and the nanoscale network structure maintained its integrity after washing. The white BC fabric after the bleaching step was bleached using 5% H2O2 solution. The white BC fabric with the highest white index (73.15 ± 1.09%) without a natural yellowish-brown color was produced. In the Fourier transform infrared spectroscopy (FTIR) spectra of the white BC fabric, the peaks of proteins and amino acids derived from the bacteria disappeared, while the cellulose I crystal structure was maintained. Also, X-ray diffraction analysis showed that the crystallinity of the white BC fabric increased compared to that of the control sample, and the highest crystallinity of 80.6% was obtained.


Sign in / Sign up

Export Citation Format

Share Document