Baffle plate configurations to enhance separation in horizontal primary separators

2000 ◽  
Vol 77 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Derek Wilkinson ◽  
Brian Waldie ◽  
M.I. Mohamad Nor ◽  
Hsio Yen Lee
Keyword(s):  
2021 ◽  
Vol 11 (5) ◽  
pp. 159-170
Author(s):  
Zsolt Hegyes ◽  
Máté Petrik ◽  
L. Gábor Szepesi

During the operation of the hydrocyclone the cut size diameter is the most important data. This is connected to feed rate, which is closely related to the feed cross section. Preliminary research has revealed that square cross-section is more effective than circular cross-section. The research compared 2 types of feed cross sections at 5 different feed rates. One is a standard rectangular cross-section and the other is a square cross-section that narrows with a baffle plate. Preliminary calculations for cut size diameter have shown that better particle separation at all speeds can be achieved with the baffle plate solution. In both types, the increased velocity created decreased cut size diameter. During the simulation, the baffle plate did not cause any abnormalities in the internal pressure and velocity distributions. The simulation revealed that the particles did not behave as previously calculated.


1989 ◽  
Vol 111 (4) ◽  
pp. 428-434 ◽  
Author(s):  
A. Yasuo ◽  
M. P. Paidoussis

In some heat exchangers and steam generators, the flow is predominantly axial, and the external fluid flows between baffled compartments through enlarged holes in the baffles around the heat exchanger tubes. Thus, the tube is subjected to relatively high flow velocities over small portions of its length, in the baffle locations. In this paper, the dynamics of such an idealized system is investigated, involving a cylindrical beam with pinned ends in axial flow, going through a baffle plate of finite thickness at some intermediate point, with small radial clearance. The fluid forces along the tube are formulated in a manner reminiscent of the transfer-matrix technique, since the character of these forces changes drastically along the tube. The fluid forces are determined approximately by means of potential flow theory, and viscous effects are taken into account only in a global sense. It was found that if the flow passage through the baffle plate is diffuser-shaped, negative fluid-dynamic damping is generated therein, destabilizing the system and leading to flutter at relatively low flow velocities. The instability depends critically on the shape of the hole through the baffle and on the clearance; thus a convergent-type flow passage does not lead to instability. The negative fluid-dynamic damping is linearly proportional to the flow velocity through the baffle.


2014 ◽  
Vol 541-542 ◽  
pp. 574-578
Author(s):  
Hui Yuan Li ◽  
Hai Ji ◽  
Xu Qing Qin ◽  
Chao Wu ◽  
Yun Hu Wang

This paper aims at the requirement of tracklayer gearing controlling racing power loss (for short racing loss), analyzed mechanism of generating racing loss of a high-power hydraulic retarder. By adding different number of baffle-plate equipment, racing loss was reduced. Using CFD technology, this paper studied contrastively the racing loss of hydraulic retarder in different condition, and compared with experiment result. The result indicated that the racing loss reduced obviously after fixing baffle-plate equipment, and the CFD simulation results agree well with the experimental results.


Author(s):  
Peter L. Woodfield ◽  
Kazuya Tatsumi ◽  
Kazuyoshi Nakabe ◽  
Kenjiro Suzuki

A three-dimensional unstructured finite-volume method is used to investigate laminar flow characteristics of a miniature chamber with a possible application to micro gas turbine combustor design. The chamber is cylindrical in shape and 20mm in diameter with the fuel stream entering via a single jet in the center of one end of the can. Oxidizer jets are generated by a circular baffle plate having six holes surrounding the fuel jet. Attention is given to the effect of the inlet conditions on the flow structure and mixing pattern inside the chamber. Computations are carried out with the calculation domain inlet being positioned at two different locations; (1) at the immediate entrance to the combustion chamber (2) one combustor diameter upstream of the baffle plate. Numerous inlet conditions are considered including ‘top-hat’, fully-developed, swirling, an annular backward facing step and some asymmetrically skewed profiles. The baffle plate is shown to have a significant smoothing effect on the inlet conditions for a Reynolds number of 100.


Sign in / Sign up

Export Citation Format

Share Document