scholarly journals 235. Aminoglycoside-Derived Cationic Lipids Are Efficient Vectors for Gene Transfection In Vitro and In Vivo

2002 ◽  
Vol 5 (5) ◽  
pp. S78
2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2015 ◽  
Vol 6 (5) ◽  
pp. 780-796 ◽  
Author(s):  
Cheng Wang ◽  
Xiuli Bao ◽  
Xuefang Ding ◽  
Yang Ding ◽  
Sarra Abbad ◽  
...  

A novel coating polymer LPHF is developed for the first time to elevate the transfection efficiency of DP binary polyplexes in vitro and in vivo.


2011 ◽  
Vol 301 (4) ◽  
pp. F784-F792 ◽  
Author(s):  
Xuan Bu ◽  
Yang Zhou ◽  
Hua Zhang ◽  
Wenjing Qiu ◽  
Lu Chen ◽  
...  

Podocyte injury is considered to play important roles in the pathogenesis of human glomerular disease. There is accumulating evidence suggesting that hepatocyte growth factor (HGF) elicits preventive activity for glomerular cells in animal models of chronic renal diseases. In this study, we demonstrated that delivery of a naked plasmid vector encoding the human HGF gene into mice by a hydrodynamic-based in vivo gene transfection approach markedly reduced proteinuria and attenuated podocyte injury in a mouse model induced by puromycin aminonucleoside (PAN) injection. Systemic administration by rapid injection via the tail vein of a naked plasmid containing HGF cDNA driven under a cytomegalovirus promoter (pCMV-HGF) produced a remarkable level of human HGF protein in the circulation. Tissue distribution studies suggested that the kidney expressed a high level of the HGF transgene. Meanwhile, compared with tubules and interstitium, a higher level of exogenous HGF protein was detected in the glomeruli. Administration of pCMV-HGF dramatically abated the urine albumin excretion and podocyte injury in PAN nephropathy in mice. Exogenous expression of HGF produced evidently beneficial effects, leading to restoration of Wilms' tumor-1 (WT1) and α-actinin-4 expression and attenuation of ultrastructural damage of the podocytes. In vitro, HGF not only restored WT1 and α-actinin-4 expression but also inhibited albumin leakage of podocytes incubated with PAN in a Transwell culture chamber. These results suggest that HGF might provide a novel strategy for amelioration of podocyte injury.


2010 ◽  
pp. 371 ◽  
Author(s):  
Hans Skovgaard Poulsen ◽  
Arildsen ◽  
Jack Roth ◽  
Hans Skovgaard Poulsen ◽  
Tuxen Poulsen ◽  
...  

2021 ◽  
Vol 6 (46) ◽  
pp. 13025-13033
Author(s):  
Venkatesh Ravula ◽  
Venkanna Muripiti ◽  
Shireesha Manthurthi ◽  
Srilakshmi V. Patri

2021 ◽  
Author(s):  
Venkanna Muripiti ◽  
Brijesh Lohchania ◽  
Venkatesh Ravula ◽  
Shireesha Manturthi ◽  
Srujan Marepally ◽  
...  

Cationic lipids have been effectively used as nonviral vectors for the delivery of polynucleic acids into the cytosol.


2006 ◽  
Vol 115 (2) ◽  
pp. 234-241 ◽  
Author(s):  
Hong Sung Kim ◽  
In Ho Song ◽  
Jong Chul Kim ◽  
Eun Jeong Kim ◽  
Doo Ok Jang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 9 (20) ◽  
pp. 4438 ◽  
Author(s):  
Amélia Silva ◽  
Carlos Martins-Gomes ◽  
Tiago Coutinho ◽  
Joana Fangueiro ◽  
Elena Sanchez-Lopez ◽  
...  

The surface properties of nanoparticles have decisive influence on their interaction with biological barriers (i.e., living cells), being the concentration and type of surfactant factors to have into account. As a result of different molecular structure, charge, and degree of lipophilicity, different surfactants may interact differently with the cell membrane exhibiting different degrees of cytotoxicity. In this work, the cytotoxicity of two cationic solid lipid nanoparticles (SLNs), differing in the cationic lipids used as surfactants CTAB (cetyltrimethylammonium bromide) or DDAB (dimethyldioctadecylammonium bromide), referred as CTAB-SLNs and DDAB-SLNs, respectively, was assessed against five different human cell lines (Caco-2, HepG2, MCF-7, SV-80, and Y-79). Results showed that the cationic lipids used in SLN production highly influenced the cytotoxic profile of the particles, with CTAB-SLNs being highly cytotoxic even at low concentrations (IC50 < 10 µg/mL, expressed as CTAB amount). DDAB-SLNs produced much lower cytotoxicity, even at longer exposure time (IC50 from 284.06 ± 17.01 µg/mL (SV-80) to 869.88 ± 62.45 µg/mL (MCF-7), at 48 h). To the best of our knowledge, this is the first report that compares the cytotoxic profile of CTAB-SLNs and DDAB-SLNs based on the concentration and time of exposure, using different cell lines. In conclusion, the choice of the right surfactant for biological applications influences the biocompatibility of the nanoparticles. Regardless the type of drug delivery system, not only the cytotoxicity of the drug-loaded nanoparticles should be assessed, but also the blank (non-loaded) nanoparticles as their surface properties play a decisive role both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document