scholarly journals 1283. Critical Role of Putative MyoD and MEF-2 Binding Sites in the Construction of a Powerful MYH 3-Based Muscle-Specific Transcriptional Cassette

2002 ◽  
Vol 5 (5) ◽  
pp. S419
Keyword(s):  
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2140-2140
Author(s):  
Chunlei Zheng ◽  
Huihui Liu ◽  
David Ginsburg ◽  
Bin Zhang

Abstract Abstract 2140 Poster Board II-117 Coagulation factor V (FV) and factor VIII (FVIII) play key roles in hemostasis and thrombosis. The LMAN1 (ERGIC-53)-MCFD2 complex is a mammalian cargo receptor for efficient transport of FV and FVIII from the endoplasmic reticulum (ER) to the Golgi. Mutations in either LMAN1 or MCFD2 cause a bleeding disorder, combined deficiency of factor V and factor VIII. LMAN1 is a type-1 transmembrane protein with a Ca2+-dependent carbohydrate recognition domain homologous to leguminous lectins. MCFD2 is a small soluble protein with an N-terminal sequence of unknown structure and two Ca2+-binding EF-hand domains at the C terminus. LMAN1 and MCFD2 form a Ca2+-dependent protein complex in the ER-Golgi intermediate compartment (ERGIC), an organelle between the ER and Golgi that is unique to higher eukaryotic cells. FV and FVIII interact with the LMAN1-MCFD2 complex in a Ca2+ -dependent manner. To elucidate the role of Ca2+ in regulating the ER-to-Golgi transport of FV and FVIII, we determined the structural features important for the organization of the receptor complex and the interaction of this complex with its client cargo FV and FVIII. We show that the C-terminal Ca2+-binding EF hand domains of MCFD2 are both necessary and sufficient for interaction with LMAN1. The EF hand domains also mediate the interaction with FV and FVIII. All MCFD2 missense mutants identified in F5F8D patients are localized to the EF hand domains and fail to bind LMAN1. However, these mutants still retain the FV and FVIII binding activities. Circular dichroism spectroscopy studies on missense mutations localized to different structural elements of the EF hand domains suggest that Ca2+-induced folding of MCFD2 is important for LMAN1 interaction, but not essential for FV and FVIII binding. We also demonstrate that the carbohydrate recognition domain (CRD) of LMAN1 contains separate binding sites for MCFD2 and FV/FVIII. Mutations in the Ca2+ and sugar binding sites of CRD disrupt FV and FVIII interaction, without affecting MCFD2 binding, suggesting that the Ca2+ binding sites in LMAN1 are primarily required for the recognition of sugar residues in FV and FVIII. These results support a model in which Ca2+ plays a critical role in regulating the binding in the ER and the subsequent release in the ERGIC of FV and FVIII. Ca2+ concentration is higher in the ER than in the ERGIC and the Golgi. In the ER lumen, FV and FVIII loading is initiated by a flexible interaction with MCFD2 and stabilized by the follow-up interaction of sugar side chains of FV and FVIII with the carbohydrate binding site of LMAN1. The LMAN1-FV/FVIII interaction is more sensitive to Ca2+ concentration than the LMAN1-MCFD2 interaction, so that the lower Ca2+/pH in the ERGIC triggers the release of FV and FVIII but not the dissociation of the LMAN1-MCFD2 receptor complex. The empty receptor complex is subsequently recycled back to the ER for the next round of cargo loading. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Du ◽  
Jia-Mei Wang ◽  
Da-Lin Zhang ◽  
Tong Wu ◽  
Xiao-Yan Zeng ◽  
...  

The pathogenesis of papillary thyroid cancer (PTC), the most common type of thyroid cancer, is not yet fully understood. This limits the therapeutic options for approximately 7% of invasive PTC patients. The critical role of AUF1 in the progression of thyroid cancer was first reported in 2009, however, its molecular mechanism remained unclear. Our study used CRISPR/Cas 9 system to knockdown AUF1 in IHH4 and TPC1 cells. We noticed that the expression of TRIM58 and ZBTB2 were increased in the AUF1 knockdown IHH4 and TPC1 cells. When TRIM58 and ZBTB2 were inhibited by small hairpin RNAs (shRNAs) against TRIM58 (shTRIM58) and ZBTB2 (shZBTB2), respectively, the proliferation, migration, and invasion ability of the AUF1-knockdown IHH4 and TPC1 cells were increased. In addition, two ZBTB2 binding sites (-719~-709 and -677~-668) on TRIM58 promoter and two AUF1 binding sites (1250-1256 and 1258-1265) on ZBTB2 3’-UTR were identified. These results suggested that AUF1 affecting thyroid cancer cells via regulating the expression of ZBTB2 and TRIM58.


2021 ◽  
Vol 118 (8) ◽  
pp. e2010241118
Author(s):  
Tiantian Bu ◽  
Sijia Lu ◽  
Kai Wang ◽  
Lidong Dong ◽  
Shilin Li ◽  
...  

Photoperiod sensitivity is a key factor in plant adaptation and crop production. In the short-day plant soybean, adaptation to low latitude environments is provided by mutations at the J locus, which confer extended flowering phase and thereby improve yield. The identity of J as an ortholog of Arabidopsis ELF3, a component of the circadian evening complex (EC), implies that orthologs of other EC components may have similar roles. Here we show that the two soybean homeologs of LUX ARRYTHMO interact with J to form a soybean EC. Characterization of mutants reveals that these genes are highly redundant in function but together are critical for flowering under short day, where the lux1 lux2 double mutant shows extremely late flowering and a massively extended flowering phase. This phenotype exceeds that of any soybean flowering mutant reported to date, and is strongly reminiscent of the “Maryland Mammoth” tobacco mutant that featured in the seminal 1920 study of plant photoperiodism by Garner and Allard [W. W. Garner, H. A. Allard, J. Agric. Res. 18, 553–606 (1920)]. We further demonstrate that the J–LUX complex suppresses transcription of the key flowering repressor E1 and its two homologs via LUX binding sites in their promoters. These results indicate that the EC–E1 interaction has a central role in soybean photoperiod sensitivity, a phenomenon also first described by Garner and Allard. EC and E1 family genes may therefore constitute key targets for customized breeding of soybean varieties with precise flowering time adaptation, either by introgression of natural variation or generation of new mutants by gene editing.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ye Xu ◽  
Na Man ◽  
Daniel Karl ◽  
Concepcion Martinez ◽  
Fan Liu ◽  
...  

Abstract AML1-ETO (AE) is a fusion transcription factor, generated by the t(8;21) translocation, that functions as a leukemia promoting oncogene. Here, we demonstrate that TATA-Box Binding Protein Associated Factor 1 (TAF1) associates with K43 acetylated AE and this association plays a pivotal role in the proliferation of AE-expressing acute myeloid leukemia (AML) cells. ChIP-sequencing indicates significant overlap of the TAF1 and AE binding sites. Knockdown of TAF1 alters the association of AE with chromatin, affecting of the expression of genes that are activated or repressed by AE. Furthermore, TAF1 is required for leukemic cell self-renewal and its reduction promotes the differentiation and apoptosis of AE+ AML cells, thereby impairing AE driven leukemogenesis. Together, our findings reveal a role of TAF1 in leukemogenesis and identify TAF1 as a potential therapeutic target for AE-expressing leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4329-4329
Author(s):  
Valentina S Caputo ◽  
Nikolaos Trasanidis ◽  
Xiaolin Xiao ◽  
Mark E Robinson ◽  
Alexia Katsarou ◽  
...  

BACKGROUND: Bone disease, a common source of morbidity in multiple myeloma (MM), is caused by RANKL-induced aberrant activation of osteoclasts (OC). RANKL-induced OC lineage commitment requires repression of an Irf-8 dependent macrophage inflammatory transcriptional programme commensurate with activation of an OC lineage-specific programme. Functional data have shown the requirement for the histone acetylation readers Brd2-4 BET proteins and of cMyc for OC lineage development. However, how Brd2-4 and Myc co-operate genome-wide to regulate transcriptome changes that underpin the very early stages of RANKL-induced OC lineage commitment has not been defined. METHODS: The OC progenitor-like murine RAW264.7 cell line was used for osteoclastogenesis. OC were assayed by TRAP staining. We performed RNA-seq for transcriptome analysis and ChIP-seq against Brd2-4, cMyc, and H3K27Ac mark for epigenomic profiling. The pan-Bet inhibitor IBET151 was used alone or in combination with RANKL. ChIP-seq/RNA-seq data were processed using standard bioinformatics pipelines; downstream analyses (pathway and motif enrichment, factor differential binding) were performed by various tools including EnrichR, R packages ChIPpeakAnno/DiffBind, Rose. RESULTS: Transcriptomic profiling of OC progenitors at 0, 4, 14 and 24h post-RANKL treatment identified 12 distinct clusters of expression trends. The 4h activated cluster includes OC master transcription factors (TFs; cMyc, Nfatc1, Fosl), and is enriched in OC-defining pathways. Notably, by 14h the majority of the genes required for mature OC formation and activation are already highly expressed (e.g. Ctsk, Mmp9). The downregulated clusters include monocyte defining TFs (e.g. Irf8, Mafb and Bcl6). These RANKL-dependent transcriptome changes are completely abrogated by iBET151, highlighting the critical role of Brd2-4 in osteoclastogenesis. Differential chromatin binding analysis upon RANKL induction revealed an overall enhanced Brd2-4 binding at already existing or de novo gained sites. This was more pronounced for Brd2&4 and much less for Brd3, with differentially binding sites (DBS) comprising 50% and 20% respectively of all binding sites in RANKL-treated cells. For Brd2&3, DBS were primarily distributed at promoters and for Brd4 at intergenic, candidate enhancers regions. Notably, nearly all gained DBS were sensitive to and abrogated by iBET151. Combinatorial profiling of Brd2 and Brd4 showed that almost half of Brd2 DBS peaks overlap with Brd4 (47%; 897/1896), while only 24% (766/3234) of Brd4 DBS peaks are co-occupied by Brd2. Transcriptome and Brd2&4 DBS integration in combination with motif enrichment analysis, identified genes that are predicted to be regulated by Brd2 and/or Brd4. EnrichR analysis suggests that enhanced binding of Brd2&4, singly or in combination, is required for activation of the critical OC lineage-specific and repression of the macrophage-defining transcriptional programs highlighting the non-redundant roles of Brd2&4 in OC development. Cell lineage commitment often requires 'commissioning' of cell-specific super-enhancers (SE). Combined analysis of genome-wide Brd4/H3K27ac profiles identified 678 RANKL-induced SE and their respective target genes. Further, 110 of these SE showed enhanced Brd4 binding in 2 peaks: 20/110 were linked to significantly up- and 90/100 to down-regulated genes. The repressed genes were significantly enriched to previously described Irf8, MafB and RunX1 targets, suggesting a critical role of SE in the repression of the monocyte/macrophage inflammatory programme during OC lineage commitment. Strikingly, among top hits, we detected a SE linked to the regulation of cMyc. To further investigate its role in OC development, we obtained the cistrome of cMyc after RANKL induction. We identified 560 binding sites which were highly enriched in cMyc, Max, Fli1, Fosl2 and Irf8 motifs. Cistrome-transcriptome integration suggested direct activation of 141 and repression of 52 genes by cMyc in response to RANKL; these are enriched in ribosome biogenesis pathways and Irf8-dependent targets respectively. CONCLUSIONS: Myc and Brd4 mark SE that repress an Irf8-dependent transcriptional programme, a requirement for OC lineage commitment. The non-redundant roles of Brd2&4 suggest that selective targeting of either could inhibit aberrant OC activation associated with MM. Disclosures Caputo: GSK: Research Funding. Auner:Amgen: Other: Consultancy and Research Funding; Takeda: Consultancy; Karyopharm: Consultancy. Karadimitris:GSK: Research Funding.


Author(s):  
Stephanie E. Reitsma ◽  
Jiaqing Pang ◽  
Vikram Raghunathan ◽  
Joseph J. Shatzel ◽  
Christina U. Lorentz ◽  
...  

Factor (F)XI has been shown to bind platelets, but the functional significance of this observation remains unknown. Platelets are essential for hemostasis and play a critical role in thrombosis, while FXI is not essential for hemostasis, but promotes thrombosis. An apparent functional contradiction, platelets are known to support thrombin generation, yet, platelet granules release protease inhibitors, including those of activated FXI (FXIa). We aim to investigate the secretory and binding mechanisms by which platelets could support or inhibit FXIa activity. The presence of platelets enhanced FXIa activity in purified system and increased FIX activation by FXIa and fibrin generation in human plasma. In contrast, platelets reduced the activation of FXI by FXIIa and the activation of FXII by kallikrein. Incubation of FXIa with the platelet secretome, which contains FXIa inhibitors, such as protease nexin-II, abolished FXIa activity, yet in the presence of activated platelets the secretome was not able to block the activity of FXIa. FXIa variants lacking the anion-binding sites did not alter the effect of platelets on FXIa activity or interaction. Western blot analysis of bound FXIa (by FXI(a)-platelet membrane immunoprecipitation) showed that the interaction with platelets is zinc-dependent and, unlike FXI binding to platelets, not dependent on glycoprotein Ib (GPIb). FXIa binding to the platelet membrane increases its capacity to activate FIX in plasma likely by protecting it from inhibition by inhibitors secreted by activated platelets. Our findings suggest that an interaction of FXIa with the platelet surface may induce an allosteric modulation of FXIa.


2008 ◽  
Vol 15 (2) ◽  
pp. 50-59 ◽  
Author(s):  
Amy Philofsky

AbstractRecent prevalence estimates for autism have been alarming as a function of the notable increase. Speech-language pathologists play a critical role in screening, assessment and intervention for children with autism. This article reviews signs that may be indicative of autism at different stages of language development, and discusses the importance of several psychometric properties—sensitivity and specificity—in utilizing screening measures for children with autism. Critical components of assessment for children with autism are reviewed. This article concludes with examples of intervention targets for children with ASD at various levels of language development.


1998 ◽  
Vol 5 (1) ◽  
pp. 115A-115A
Author(s):  
K CHWALISZ ◽  
E WINTERHAGER ◽  
T THIENEL ◽  
R GARFIELD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document