scholarly journals AUF1 Promotes Proliferation and Invasion of Thyroid Cancer via Downregulation of ZBTB2 and Subsequent TRIM58

2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Du ◽  
Jia-Mei Wang ◽  
Da-Lin Zhang ◽  
Tong Wu ◽  
Xiao-Yan Zeng ◽  
...  

The pathogenesis of papillary thyroid cancer (PTC), the most common type of thyroid cancer, is not yet fully understood. This limits the therapeutic options for approximately 7% of invasive PTC patients. The critical role of AUF1 in the progression of thyroid cancer was first reported in 2009, however, its molecular mechanism remained unclear. Our study used CRISPR/Cas 9 system to knockdown AUF1 in IHH4 and TPC1 cells. We noticed that the expression of TRIM58 and ZBTB2 were increased in the AUF1 knockdown IHH4 and TPC1 cells. When TRIM58 and ZBTB2 were inhibited by small hairpin RNAs (shRNAs) against TRIM58 (shTRIM58) and ZBTB2 (shZBTB2), respectively, the proliferation, migration, and invasion ability of the AUF1-knockdown IHH4 and TPC1 cells were increased. In addition, two ZBTB2 binding sites (-719~-709 and -677~-668) on TRIM58 promoter and two AUF1 binding sites (1250-1256 and 1258-1265) on ZBTB2 3’-UTR were identified. These results suggested that AUF1 affecting thyroid cancer cells via regulating the expression of ZBTB2 and TRIM58.

RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4163-4163
Author(s):  
Laura Fisher

Retraction of ‘Overexpression of PCDH8 inhibits proliferation and invasion, and induces apoptosis in papillary thyroid cancer cells’ by Liang Chang et al., RSC Adv., 2018, 8, 18030–18037, DOI: 10.1039/C8RA02291G.


2021 ◽  
Author(s):  
Qing Liu ◽  
Ouyang Li ◽  
Chi Zhou ◽  
Yu Wang ◽  
Chunxue He ◽  
...  

Abstract Background: Thyroid cancer is the most prevalent malignancy and one of the leading causes of cancer-related deaths. Recent studies have revealed that microRNAs (miRNAs) play an important role in tumorigenesis in various cancer types by affecting the expression of its targets. However, the role of miR-32-5p in thyroid cancer remains limited. Methods: In this study, we attempt to explore the role of miR-32-5p in thyroid cancer and elucidate the underlying mechanism. Expression of miR-32-5p was determined by quantitative reverse transcription PCR. Functional assays were performed by CCK-8 assay, cell colony assay, cell apoptosis assay, cell migration and invasion assays, cell cycle assay and luciferase assay. Protein expression was analyzed by Western blot.Results: In the present study, the role of miR-32-5p in thyroid cancer was firstly explored. It is found that miR-32-5p was downregulated in thyroid cancer tissues and cells. Overexpression of miR-32-5p inhibited thyroid cancer cells proliferation, migration, invasion and epithelial‐mesenchymal transition process; while suppression of miR-32-5p exhibited an opposite effect on thyroid cancer cells. In addition, In addition, a luciferase assay showed Twist1 was identified as a direct target of miR-32-5p in thyroid cancer, and further study showed that restoration of Twist1 attenuated the biological effect of miR-32-5p on thyroid cancer cells. Conclusion: In conclusion, our results demonstrated miR-32-5p functions as a tumor suppressor by targeting Twist1 in thyroid cancer, providing a novel insight into thyroid cancer therapy.


2019 ◽  
Vol Volume 12 ◽  
pp. 1309-1318 ◽  
Author(s):  
Jingzhu Zhao ◽  
Xinwei Yun ◽  
Xianhui Ruan ◽  
Jiadong Chi ◽  
Yang Yu ◽  
...  

Author(s):  
Ersilia Nigro ◽  
Francesca Maria Orlandella ◽  
Rita Polito ◽  
Raffaela Mariarosaria Mariniello ◽  
Maria Ludovica Monaco ◽  
...  

AbstractAdiponectin (Acrp30) and leptin, adipokines produced and secreted mainly by the adipose tissue, are involved in human carcinogenesis. Thyroid carcinomas are frequent endocrine cancers, and several evidences suggest that they are correlated with obesity. In this study, we first analyzed the expression levels and prognostic values of Acrp30, leptin, and their receptors in thyroid cancer cells. Then, we investigated the role of Acrp30 and leptin in proliferation, migration, and invasion. We found that Acrp30 treatment alone inhibits cell proliferation and cell viability in a time and dose-dependent manner; leptin alone does not influence thyroid cancer cells (BCPAP and K1) proliferation, but the combined treatment reverts Acrp30-induced effects on cell proliferation. Additionally, through wound healing and Matrigel Matrix invasion assays, we unveiled that Acrp30 inhibits thyroid cancer cell motility, while leptin induces the opposite effect. Importantly, in the combined treatment, Acrp30 and leptin exert antagonizing effects on papillary thyroid cancer cells’ migration and invasion in both BCPAP and K1 cell lines. Highlights of these studies suggest that Acrp30 and leptin could represent therapeutic targets and biomarkers for the management of thyroid cancer.


Sign in / Sign up

Export Citation Format

Share Document