1P-0172 Neurotrophin-3 stimulates the production of nitric oxide of rat cerebral endothelial cells

2003 ◽  
Vol 4 (2) ◽  
pp. 58
Author(s):  
C. Takeo ◽  
S. Nakamura ◽  
T. Tanaka ◽  
D. Uchida ◽  
Y. Noguchi ◽  
...  
2012 ◽  
Vol 32 (5) ◽  
pp. 884-895 ◽  
Author(s):  
Fabricio Simão ◽  
Aline S Pagnussat ◽  
Ji Hae Seo ◽  
Deepti Navaratna ◽  
Wendy Leung ◽  
...  

Resveratrol may be a powerful way of protecting the brain against a wide variety of stress and injury. Recently, it has been proposed that resveratrol not only reduces brain injury but also promotes recovery after stroke. But the underlying mechanisms are unclear. Here, we tested the hypothesis that resveratrol promotes angiogenesis in cerebral endothelial cells and dissected the signaling pathways involved. Treatment of cerebral endothelial cells with resveratrol promoted proliferation, migration, and tube formation in Matrigel assays. Consistent with these pro-angiogenic responses, resveratrol altered endothelial morphology resulting in cytoskeletal rearrangements of β-catenin and VE-cadherin. These effects of resveratrol were accompanied by activation of phosphoinositide 3 kinase (PI3-K)/Akt and Mitogen-Activated Protein Kinase (MAPK)/ERK signaling pathways that led to endothelial nitric oxide synthase upregulation and increased nitric oxide (NO) levels. Subsequently, elevated NO signaling increased vascular endothelial growth factor and matrix metalloproteinase levels. Sequential blockade of these signaling steps prevented resveratrol-induced angiogenesis in cerebral endothelial cells. These findings provide a mechanistic basis for the potential use of resveratrol as a candidate therapy to promote angiogenesis and neurovascular recovery after stroke.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 573 ◽  
Author(s):  
Janice Taïlé ◽  
Angélique Arcambal ◽  
Patricia Clerc ◽  
Anne Gauvin-Bialecki ◽  
Marie-Paule Gonthier

Blood-brain barrier endothelial cells are the main targets of diabetes-related hyperglycemia that alters endothelial functions and brain homeostasis. Hyperglycemia-mediated oxidative stress may play a causal role. This study evaluated the protective effects of characterized polyphenol-rich medicinal plant extracts on redox, inflammatory and vasoactive markers on murine bEnd3 cerebral endothelial cells exposed to high glucose concentration. The results show that hyperglycemic condition promoted oxidative stress through increased reactive oxygen species (ROS) levels, deregulated antioxidant superoxide dismutase (SOD) activity, and altered expression of genes encoding Cu/ZnSOD, MnSOD, catalase, glutathione peroxidase (GPx), heme oxygenase-1 (HO-1), NADPH oxidase 4 (Nox4), and nuclear factor erythroid 2-related factor 2 (Nrf2) redox factors. Cell preconditioning with inhibitors of signaling pathways highlights a causal role of nuclear factor kappa B (NFκB), while a protective action of AMP-activated protein kinase (AMPK) on redox changes. The hyperglycemic condition induced a pro-inflammatory response by elevating NFκB gene expression and interleukin-6 (IL-6) secretion, and deregulated the production of endothelin-1 (ET-1), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) vasoactive markers. Importantly, polyphenolic extracts from Antirhea borbonica, Ayapana triplinervis, Dodonaea viscosa, and Terminalia bentzoe French medicinal plants, counteracted high glucose deleterious effects by exhibiting antioxidant and anti-inflammatory properties. In an innovative way, quercetin, caffeic, chlorogenic and gallic acids identified as predominant plant polyphenols, and six related circulating metabolites were found to exert similar benefits. Collectively, these findings demonstrate polyphenol protective action on cerebral endothelial cells during hyperglycemic condition.


2003 ◽  
Vol 305 (2) ◽  
pp. 400-406 ◽  
Author(s):  
Chikari Takeo ◽  
Susumu Nakamura ◽  
Tomoaki Tanaka ◽  
Daigaku Uchida ◽  
Yoshihiko Noguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document