scholarly journals WS16-6 Two years' experience of utilising CFTR next generation sequencing in a newborn screening program

2019 ◽  
Vol 18 ◽  
pp. S31
Author(s):  
M. Rock ◽  
S. Mochal ◽  
B. Zeitler ◽  
M. Loehe ◽  
M. Baker
2020 ◽  
Vol 59 (4) ◽  
pp. 256-263
Author(s):  
Barbka Repič Lampret ◽  
Žiga Iztok Remec ◽  
Ana Drole Torkar ◽  
Mojca Žerjav Tanšek ◽  
Andraz Šmon ◽  
...  

AbstractIntroductionIn the last two decades, the introduction of tandem mass spectrometry in clinical laboratories has enabled simultaneous testing of numerous acylcarnitines and amino acids from dried blood spots for detecting many aminoacidopathies, organic acidurias and fatty acid oxidation disorders. The expanded newborn screening was introduced in Slovenia in September 2018. Seventeen metabolic diseases have been added to the pre-existing screening panel for congenital hypothyroidism and phenylketonuria, and the newborn screening program was substantially reorganized and upgraded.MethodsTandem mass spectrometry was used for the screening of dried blood spot samples. Next-generation sequencing was introduced for confirmatory testing. Existing heterogeneous hospital information systems were connected to the same laboratory information system to allow barcode identification of samples, creating reports, and providing information necessary for interpreting the results.ResultsIn t he first y ear of t he expanded newborn screening a total of 15,064 samples w ere screened. Four patients were confirmed positive with additional testing.ConclusionsAn expanded newborn screening program was successfully implemented with the first patients diagnosed before severe clinical consequences.


2018 ◽  
Vol 52 ◽  
pp. 48-55 ◽  
Author(s):  
Andraz Smon ◽  
Barbka Repic Lampret ◽  
Urh Groselj ◽  
Mojca Zerjav Tansek ◽  
Jernej Kovac ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ziga I. Remec ◽  
Katarina Trebusak Podkrajsek ◽  
Barbka Repic Lampret ◽  
Jernej Kovac ◽  
Urh Groselj ◽  
...  

Newborn screening was first introduced at the beginning of the 1960s with the successful implementation of the first phenylketonuria screening programs. Early expansion of the included disorders was slow because each additional disorder screened required a separate test. Subsequently, the technological advancements of biochemical methodology enabled the scaling-up of newborn screening, most notably with the implementation of tandem mass spectrometry. In recent years, we have witnessed a remarkable progression of high-throughput sequencing technologies, which has resulted in a continuous decrease of both cost and time required for genetic analysis. This has enabled more widespread use of the massive multiparallel sequencing. Genomic sequencing is now frequently used in clinical applications, and its implementation in newborn screening has been intensively advocated. The expansion of newborn screening has raised many clinical, ethical, legal, psychological, sociological, and technological concerns over time. This review provides an overview of the current state of next-generation sequencing regarding newborn screening including current recommendations and potential challenges for the use of such technologies in newborn screening.


2017 ◽  
Vol 102 (5) ◽  
pp. 1529-1537 ◽  
Author(s):  
David R. Murdock ◽  
Frank X. Donovan ◽  
Settara C. Chandrasekharappa ◽  
Nicole Banks ◽  
Carolyn Bondy ◽  
...  

Abstract Context: Turner syndrome (TS) is due to a complete or partial loss of an X chromosome in female patients and is not currently part of newborn screening (NBS). Diagnosis is often delayed, resulting in missed crucial diagnostic and therapeutic opportunities. Objectives: This study sought to determine if whole-exome sequencing (WES) as part of a potential NBS program could be used to diagnose TS. Design, Setting, Patients: Karyotype, chromosomal microarray, and WES were performed on blood samples from women with TS (n = 27) enrolled in the Personalized Genomic Research study at the National Institutes of Health. Female control subjects (n = 37) and male subjects (n = 27) also underwent WES. Copy number variation was evaluated using EXCAVATOR2 and B allele frequency was calculated from informative single nucleotide polymorphisms. Simulated WES data were generated for detection of low-level mosaicism and complex structural chromosome abnormalities. Results: We detected monosomy for chromosome X in all 27 TS samples, including 1 mosaic for 45,X/46,XX and another with previously unreported material on chromosome Y. Sensitivity and specificity were both 100% for the diagnosis of TS with no false-positive or false-negative results. Using simulated WES data, we detected isochromosome Xq and low-level mosaicism as low as 5%. Conclusion: We present an accurate method of diagnosing TS using WES, including cases with low-level mosaicism, isochromosome Xq, and cryptic Y-chromosome material. Given the potential use of next-generation sequencing for NBS in many different diseases and syndromes, we propose WES can be used as a screening test for TS in newborns.


2019 ◽  
Vol 28 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Tobias Fleige ◽  
Siegfried Burggraf ◽  
Ludwig Czibere ◽  
Julia Häring ◽  
Birgit Glück ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 76
Author(s):  
Kuntal Sen ◽  
Jennifer Harmon ◽  
Andrea L. Gropman

In this review, we analyze medical and select ethical aspects of the increasing use of next-generation sequencing (NGS) based tests in newborn medicine. In the last five years, there have been several studies exploring the role of rapid exome sequencing (ES) and genome sequencing (GS) in critically ill newborns. While the advantages include a high diagnostic yield with potential changes in interventions, there have been ethical dilemmas surrounding consent, information about adult-onset diseases and resolution of variants of uncertain significance. Another active area of research includes a cohort of studies funded under Newborn Sequencing in Genomic Medicine and Public Health pertaining to the use of ES and GS in newborn screening (NBS). While these techniques may allow for screening for several genetic disorders that do not have a detectable biochemical marker, the high costs and long turnaround times of these tests are barriers in their utilization as public health screening tests. Discordant results between conventional NBS and ES-based NBS, as well as challenges with consent, are other potential pitfalls of this approach. Please see the Bush, Al-Hertani and Bodamer article in this Special Issue for the broader scope and further discussion.


Sign in / Sign up

Export Citation Format

Share Document