scholarly journals Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells

2010 ◽  
Vol 24 (6) ◽  
pp. 424-435 ◽  
Author(s):  
Bo Cui ◽  
Stewart P. Johnson ◽  
Nancy Bullock ◽  
Francis Ali-Osman ◽  
Darell D. Bigner ◽  
...  
2021 ◽  
Author(s):  
Rodolfo Bortolozo Serafim ◽  
Cibele Cardoso ◽  
Vanessa Arfelli ◽  
Valeria Valente ◽  
Leticia Fröhlich Archangelo

Abstract PIMREG expression strongly correlates with cellular proliferation in both malignant and normal cells. Throughout embryo development, PIMREG expression is prominent at the central nervous system. Recent studies have described high levels of PIMREG transcripts in different types of tumors and correlated with patient survival and tumor aggressiveness. Given the emerging significance of PIMREG in carcinogenesis and its putative role in the context of the nervous system, we investigated the expression and function of PIMREG in gliomas, the most common primary brain tumors. We performed an extensive analysis of PIMREG expression in tumors samples of glioma patients, assessed the effects of PIMREG silencing and overexpression on the sensitivity of glioblastoma cell lines treated with genotoxic agents commonly used for treating patients and assessed for treatment response, proliferation and migration. We show that glioblastoma exhibits the highest levels of PIMREG expression among all cancers analyzed and that elevated PIMREG expression is a biomarker for glioma progression and patient outcome. Moreover, PIMREG is induced by genotoxic agents and its silencing renders glioblastoma cells sensitive to temozolomide treatment and affects ATR- and ATM-dependent signaling. Our data demonstrate that PIMREG plays a role in DNA damage response and temozolomide resistance of glioblastoma cells and further support the PIMREG role in tumorigenesis.


Tumor Biology ◽  
2015 ◽  
Vol 37 (6) ◽  
pp. 7719-7727 ◽  
Author(s):  
Andrej Besse ◽  
Jiri Sana ◽  
Radek Lakomy ◽  
Leos Kren ◽  
Pavel Fadrus ◽  
...  

2015 ◽  
Vol 356 (2) ◽  
pp. 525-535 ◽  
Author(s):  
Lotte M.E. Berghauser Pont ◽  
Kishan Naipal ◽  
Jenneke J. Kloezeman ◽  
Subramanian Venkatesan ◽  
Martin van den Bent ◽  
...  

Author(s):  
Elena Navarro-Carrasco ◽  
Pedro A. Lazo

BackgroundGlioblastomas treated with temozolomide frequently develop resistance to pharmacological treatments. Therefore, there is a need to find alternative drug targets to reduce treatment resistance based on tumor dependencies. A possibility is to target simultaneously two proteins from different DNA-damage repair pathways to facilitate tumor cell death. Therefore, we tested whether targeting the human chromatin kinase VRK1 by RNA interference can identify this protein as a novel molecular target to reduce the dependence on temozolomide in combination with olaparib, based on synthetic lethality.Materials and MethodsDepletion of VRK1, an enzyme that regulates chromatin dynamic reorganization and facilitates resistance to DNA damage, was performed in glioblastoma cells treated with temozolomide, an alkylating agent used for GBM treatment; and olaparib, an inhibitor of PARP-1, used as sensitizer. Two genetically different human glioblastoma cell lines, LN-18 and LN-229, were used for these experiments. The effect on the DNA-damage response was followed by determination of sequential steps in this process: H4K16ac, γH2AX, H4K20me2, and 53BP1.ResultsThe combination of temozolomide and olaparib increased DNA damage detected by labeling free DNA ends, and chromatin relaxation detected by H4K16ac. The combination of both drugs, at lower doses, resulted in an increase in the DNA damage response detected by the formation of γH2AX and 53BP1 foci. VRK1 depletion did not prevent the generation of DNA damage in TUNEL assays, but significantly impaired the DNA damage response induced by temozolomide and olaparib, and mediated by γH2AX, H4K20me2, and 53BP1. The combination of these drugs in VRK1 depleted cells resulted in an increase of glioblastoma cell death detected by annexin V and the processing of PARP-1 and caspase-3.ConclusionDepletion of the chromatin kinase VRK1 promotes tumor cell death at lower doses of a combination of temozolomide and olaparib treatments, and can be a novel alternative target for therapies based on synthetic lethality.


2019 ◽  
Vol 133 ◽  
pp. 77-86 ◽  
Author(s):  
Ramon Lopez Perez ◽  
Nils H. Nicolay ◽  
Jörg-Christian Wolf ◽  
Moritz Frister ◽  
Peter Schmezer ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Sheau-Fang Yang ◽  
Chien-Wei Chang ◽  
Ren-Jie Wei ◽  
Yow-Ling Shiue ◽  
Shen-Nien Wang ◽  
...  

Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1642-C1642
Author(s):  
Aya Toma ◽  
Tomio Takahashi ◽  
Yusuke Sato ◽  
Sakurako Goto-Ito ◽  
Atsushi Yamagata ◽  
...  

Double-strand break (DSB) and interstrand crosslink (ICL) are serious damages in DNA. Responses to these DNA damages include ubiquitination of damaged chromatin and other substrates, which recruit protein complexes required for DNA repair. Therefore, many proteins involved in DNA damage response contain ubiquitin-binding modules. For instance, a ubiquitin ligase RNF168, which catalyzes K63-linked polyubiquitination of histone H2A, contains two types of ubiquitin binding motifs, MIU (motif interacting with ubiquitin) and UIM (UIM and MIU-related Ub-binding domain). FAAP20, which recruits Fanconi anemia proteins (crosslink-repair factors), contains a UBZ (ubiquitin-binding zinc finger) domain. To date, mechanisms for ubiquitin recognition by UMI and UBZ domains have remained unclear. In this study, we determined crystal structures of RNF168 UMI and FAAP20 UBZ in complex with ubiquitin at 1.9 Å resolutions, respectively. SPR analyses using UMI and UBZ mutants, which were designed to disrupt Ub binding, confirmed that the observed interactions between Ub and UMI or UBZ are critical for binding. Our structure and the accompanying in-vitro structure-based mutagenesis experiments reveal the structural basis of these important recognition events.


2021 ◽  
Author(s):  
Nitish Gulve ◽  
Zhong Deng ◽  
Samantha Soldan ◽  
Olga Vladimirova ◽  
Jayamanna Wickramasinghe ◽  
...  

Abstract DAXX and ATRX are tumor suppressor proteins that form a histone H3.3 chaperone complex and are frequently mutated in cancers with the alternative lengthening of telomeres (ALT), such as pediatric glioblastoma. Rapid loss of function of either DAXX or ATRX are not by themselves sufficient to induce the ALT phenotype. However, cells lacking DAXX or ATRX can be readily selected for ALT-like features. Here, we show that DAXX and ATRX null glioblastoma cells with ALT-like features have defects in p53 chromatin binding and DNA damage response regulation. RNA-seq analysis of DAXX or ATRX null U87 glioblastoma cells with ALT-like features revealed that p53 pathway is among perturbed. ALT-selected DAXX and ATRX-null cells had aberrant response to DNA damaging agent etoposide. Both DAXX and ATRX-null ALT cells showed a loss of p53 binding at a subset of response elements. Complementation of DAXX null cells with a wild-type DAXX transgene rescued p53 binding and transcription, while the tumor associated mutation L130R that disrupts ATRX binding was incapable of rescuing p53 chromatin binding. We show that histone H3.3 binding is reduced in DAXX-null cells especially at subtelomeric p53 binding sites and telomere repeats. These findings indicate that DAXX and ATRX function to enable p53 chromatin binding through modulation of histone H3.3 binding, especially at sub-telomeric sites.


Sign in / Sign up

Export Citation Format

Share Document