scholarly journals Inhibition of Phosphatidylinositol 3-Kinase/AKT Signaling by NVP-BKM120 Promotes ABT-737–Induced Toxicity in a Caspase-Dependent Manner through Mitochondrial Dysfunction and DNA Damage Response in Established and Primary Cultured Glioblastoma Cells

2014 ◽  
Vol 350 (1) ◽  
pp. 22-35 ◽  
Author(s):  
Esther P. Jane ◽  
Daniel R. Premkumar ◽  
Alejandro Morales ◽  
Kimberly A. Foster ◽  
Ian F. Pollack
2021 ◽  
Author(s):  
Rodolfo Bortolozo Serafim ◽  
Cibele Cardoso ◽  
Vanessa Arfelli ◽  
Valeria Valente ◽  
Leticia Fröhlich Archangelo

Abstract PIMREG expression strongly correlates with cellular proliferation in both malignant and normal cells. Throughout embryo development, PIMREG expression is prominent at the central nervous system. Recent studies have described high levels of PIMREG transcripts in different types of tumors and correlated with patient survival and tumor aggressiveness. Given the emerging significance of PIMREG in carcinogenesis and its putative role in the context of the nervous system, we investigated the expression and function of PIMREG in gliomas, the most common primary brain tumors. We performed an extensive analysis of PIMREG expression in tumors samples of glioma patients, assessed the effects of PIMREG silencing and overexpression on the sensitivity of glioblastoma cell lines treated with genotoxic agents commonly used for treating patients and assessed for treatment response, proliferation and migration. We show that glioblastoma exhibits the highest levels of PIMREG expression among all cancers analyzed and that elevated PIMREG expression is a biomarker for glioma progression and patient outcome. Moreover, PIMREG is induced by genotoxic agents and its silencing renders glioblastoma cells sensitive to temozolomide treatment and affects ATR- and ATM-dependent signaling. Our data demonstrate that PIMREG plays a role in DNA damage response and temozolomide resistance of glioblastoma cells and further support the PIMREG role in tumorigenesis.


2020 ◽  
Vol 61 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Makoto Ihara ◽  
Kazuko Shichijo ◽  
Satoshi Takeshita ◽  
Takashi Kudo

Abstract Wortmannin, a fungal metabolite, is a specific inhibitor of the phosphatidylinositol 3-kinase (PI3K) family, which includes double-stranded DNA dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated kinase (ATM). We investigated the effects of wortmannin on DNA damage in DNA-PK-deficient cells obtained from severe combined immunodeficient mice (SCID cells). Survival of wortmannin-treated cells decreased in a concentration-dependent manner. After treatment with 50 μM wortmannin, survival decreased to 60% of that of untreated cells. We observed that treatment with 20 and 50 μM wortmannin induced DNA damage equivalent to that by 0.37 and 0.69 Gy, respectively, of γ-ray radiation. The accumulation of DNA double-strand breaks (DSBs) in wortmannin-treated SCID cells was assessed using pulsed-field gel electrophoresis. The maximal accumulation was observed 4 h after treatment. Moreover, the presence of DSBs was confirmed by the ability of nuclear extracts from γ-ray-irradiated SCID cells to produce in vitro phosphorylation of histone H2AX. These results suggest that wortmannin induces cellular toxicity by accumulation of spontaneous DSBs through inhibition of ATM.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoqiao Yue ◽  
Chenjun Bai ◽  
Dafei Xie ◽  
Teng Ma ◽  
Ping-Kun Zhou

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells’ fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.


2019 ◽  
Vol 150 (5) ◽  
pp. 1022-1030 ◽  
Author(s):  
Dandan Xu ◽  
Weiwei Dai ◽  
Lydia Kutzler ◽  
Holly A Lacko ◽  
Leonard S Jefferson ◽  
...  

ABSTRACT Background The protein kinase target of rapamycin (mTOR) in complex 1 (mTORC1) is activated by amino acids and in turn upregulates anabolic processes. Under nutrient-deficient conditions, e.g., amino acid insufficiency, mTORC1 activity is suppressed and autophagy is activated. Intralysosomal amino acids generated by autophagy reactivate mTORC1. However, sustained mTORC1 activation during periods of nutrient insufficiency would likely be detrimental to cellular homeostasis. Thus, mechanisms must exist to prevent amino acids released by autophagy from reactivating the kinase. Objective The objective of the present study was to test whether mTORC1 activity is inhibited during prolonged leucine deprivation through ATF4-dependent upregulation of the mTORC1 suppressors regulated in development and DNA damage response 1 (REDD1) and Sestrin2. Methods Mice (8 wk old; C57Bl/6 × 129SvEV) were food deprived (FD) overnight and one-half were refed the next morning. Mouse embryo fibroblasts (MEFs) deficient in ATF4, REDD1, and/or Sestrin2 were deprived of leucine for 0–16 h. mTORC1 activity and ATF4, REDD1, and Sestrin2 expression were assessed in liver and cell lysates. Results Refeeding FD mice resulted in activation of mTORC1 in association with suppressed expression of both REDD1 and Sestrin2 in the liver. In cells in culture, mTORC1 exhibited a triphasic response to leucine deprivation, with an initial suppression followed by a transient reactivation from 2 to 4 h and a subsequent resuppression after 8 h. Resuppression occurred concomitantly with upregulated expression of ATF4, REDD1, and Sestrin2. However, in cells lacking ATF4, neither REDD1 nor Sestrin2 expression was upregulated by leucine deprivation, and resuppression of mTORC1 was absent. Moreover, in cells lacking either REDD1 or Sestrin2, mTORC1 resuppression was attenuated, and in cells lacking both proteins resuppression was further blunted. Conclusions The results suggest that leucine deprivation upregulates expression of both REDD1 and Sestrin2 in an ATF4-dependent manner, and that upregulated expression of both proteins is involved in resuppression of mTORC1 during prolonged leucine deprivation.


2018 ◽  
Vol 294 (8) ◽  
pp. 2827-2838 ◽  
Author(s):  
Chuanzhen Yang ◽  
Weicheng Zang ◽  
Yapeng Ji ◽  
Tingting Li ◽  
Yongfeng Yang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Wang ◽  
Jianshuang Li ◽  
Junyang Tan ◽  
Miaomiao Wang ◽  
Jing Yang ◽  
...  

AbstractEndonuclease G (ENDOG), a mitochondrial nuclease, is known to participate in many cellular processes, including apoptosis and paternal mitochondrial elimination, while its role in autophagy remains unclear. Here, we report that ENDOG released from mitochondria promotes autophagy during starvation, which we find to be evolutionally conserved across species by performing experiments in human cell lines, mice, Drosophila and C. elegans. Under starvation, Glycogen synthase kinase 3 beta-mediated phosphorylation of ENDOG at Thr-128 and Ser-288 enhances its interaction with 14-3-3γ, which leads to the release of Tuberin (TSC2) and Phosphatidylinositol 3-kinase catalytic subunit type 3 (Vps34) from 14-3-3γ, followed by mTOR pathway suppression and autophagy initiation. Alternatively, ENDOG activates DNA damage response and triggers autophagy through its endonuclease activity. Our results demonstrate that ENDOG is a crucial regulator of autophagy, manifested by phosphorylation-mediated interaction with 14-3-3γ, and its endonuclease activity-mediated DNA damage response.


Tumor Biology ◽  
2015 ◽  
Vol 37 (6) ◽  
pp. 7719-7727 ◽  
Author(s):  
Andrej Besse ◽  
Jiri Sana ◽  
Radek Lakomy ◽  
Leos Kren ◽  
Pavel Fadrus ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 723-723
Author(s):  
Alexandra Sobeck ◽  
Stacie Stone ◽  
Bendert deGraaf ◽  
Vincenzo Costanzo ◽  
Johan deWinter ◽  
...  

Abstract Fanconi anemia (FA) is a genetic disorder characterized by hypersensitivity to DNA crosslinking agents and diverse clinical symptoms, including developmental anomalies, progressive bone marrow failure, and predisposition to leukemias and other cancers. FA is genetically heterogeneous, resulting from mutations in any of at least eleven different genes. The FA proteins function together in a pathway composed of a mulitprotein core complex that is required to trigger the DNA-damage dependent activation of the downstream FA protein, FANCD2. This activation is thought to be the key step in a DNA damage response that functionally links FA proteins to major breast cancer susceptibility proteins BRCA1 and BRCA2 (BRCA2 is FA gene FANCD1). The essential function of the FA proteins is unknown, but current models suggest that FA proteins function at the interface between cell cycle checkpoints, DNA repair and DNA replication, and are likely to play roles in the DNA damage response during S phase. To provide a platform for dissecting the key functional events during S-phase, we developed cell-free assays for FA proteins based on replicating extracts from Xenopus eggs. We identified the Xenopus homologs of human FANCD2 (xFANCD2) and several of the FA core complex proteins (xCCPs), and biochemically characterized these proteins in replicating cell-free extracts. We found that xCCPs and a modified isoform of xFANCD2 become associated with chromatin during normal and disrupted DNA replication. Blocking initiation of replication with geminin demonstrated that association of xCCPs and xFANCD2 with chromatin occurs in a strictly replication-dependent manner that is enhanced following DNA damage by crosslinking agents or by addition of aphidicolin, an inhibitor of replicative DNA polymerases. In addition, chromatin binding of xFANCD2, but not xBRCA2, is abrogated when xFANCA is quantitatively depleted from replicating extracts suggesting that xFANCA promotes the loading of xFANCD2 on chromatin. The chromatin-association of xFANCD2 and xCCPs is diminished in the presence of caffeine, an inhibitor of checkpoint kinases. Taken together, our data suggest a model in which the ordered loading of FA proteins on chromatin is required for processing a subset of DNA replication-blocking lesions that are resolved during late stages of replication.


Blood ◽  
2011 ◽  
Vol 117 (8) ◽  
pp. 2441-2450 ◽  
Author(s):  
Krystyna Mazan-Mamczarz ◽  
Patrick R. Hagner ◽  
Yongqing Zhang ◽  
Bojie Dai ◽  
Elin Lehrmann ◽  
...  

Abstract Maintenance of genomic stability depends on the DNA damage response, a biologic barrier in early stages of cancer development. Failure of this response results in genomic instability and high predisposition toward lymphoma, as seen in patients with ataxia-telangiectasia mutated (ATM) dysfunction. ATM activates multiple cell-cycle checkpoints and DNA repair after DNA damage, but its influence on posttranscriptional gene expression has not been examined on a global level. We show that ionizing radiation modulates the dynamic association of the RNA-binding protein HuR with target mRNAs in an ATM-dependent manner, potentially coordinating the genotoxic response as an RNA operon. Pharmacologic ATM inhibition and use of ATM-null cells revealed a critical role for ATM in this process. Numerous mRNAs encoding cancer-related proteins were differentially associated with HuR depending on the functional state of ATM, in turn affecting expression of encoded proteins. The findings presented here reveal a previously unidentified role of ATM in controlling gene expression posttranscriptionally. Dysregulation of this DNA damage response RNA operon is probably relevant to lymphoma development in ataxia-telangiectasia persons. These novel RNA regulatory modules and genetic networks provide critical insight into the function of ATM in oncogenesis.


Sign in / Sign up

Export Citation Format

Share Document