Three-dimensional Porous Cu6Sn5 Alloy Anodes for Lithium-ion Batteries

2007 ◽  
Vol 23 (7) ◽  
pp. 973-977 ◽  
Author(s):  
X FAN ◽  
Q ZHUANG ◽  
H JIANG ◽  
L HUANG ◽  
Q DONG ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4348
Author(s):  
Chi Zhang ◽  
Zheng Wang ◽  
Yu Cui ◽  
Xuyao Niu ◽  
Mei Chen ◽  
...  

The volume expansion during Li ion insertion/extraction remains an obstacle for the application of Sn-based anode in lithium ion-batteries. Herein, the nanoporous (np) Cu6Sn5 alloy and Cu6Sn5/Sn composite were applied as a lithium-ion battery anode. The as-dealloyed np-Cu6Sn5 has an ultrafine ligament size of 40 nm and a high BET-specific area of 15.9 m2 g−1. The anode shows an initial discharge capacity as high as 1200 mA h g−1, and it remains a capacity of higher than 600 mA h g−1 for the initial five cycles at 0.1 A g−1. After 100 cycles, the anode maintains a stable capacity higher than 200 mA h g−1 for at least 350 cycles, with outstanding Coulombic efficiency. The ex situ XRD patterns reveal the reverse phase transformation between Cu6Sn5 and Li2CuSn. The Cu6Sn5/Sn composite presents a similar cycling performance with a slightly inferior rate performance compared to np-Cu6Sn5. The study demonstrates that dealloyed nanoporous Cu6Sn5 alloy could be a promising candidate for lithium-ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (40) ◽  
pp. 31275-31281 ◽  
Author(s):  
Xin Qian ◽  
Tao Hang ◽  
Guang Ran ◽  
Ming Li

A 3D porous Ni/Sn–O–C composite thin film anode is electrodeposited from organic electrolyte containing LiPF6 and exhibits satisfactory electrochemical performance.


Nanoscale ◽  
2013 ◽  
Vol 5 (17) ◽  
pp. 7906 ◽  
Author(s):  
Qin-qin Xiong ◽  
Jiang-ping Tu ◽  
Xin-hui Xia ◽  
Xu-yang Zhao ◽  
Chang-dong Gu ◽  
...  

2015 ◽  
Vol 8 (3) ◽  
pp. 869-875 ◽  
Author(s):  
Bo Wang ◽  
Wael Al Abdulla ◽  
Dianlong Wang ◽  
X. S. Zhao

LFP@N-GA with (010) facet oriented LFP NPs embedded in N-GA provides both rapid Li+ and electron pathways in the electrode as well as short Li+ diffusion length in LFP crystals.


2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


CrystEngComm ◽  
2015 ◽  
Vol 17 (48) ◽  
pp. 9336-9347 ◽  
Author(s):  
Jingyun Ma ◽  
Longwei Yin ◽  
Tairu Ge

We report on the rational design and synthesis of three dimensional (3D) Cu-doped NiO architectures with an adjustable chemical component, surface area, and hierarchically porous structure as anodes for lithium ion battery.


Sign in / Sign up

Export Citation Format

Share Document