P-142 Interleukin-6 Inhibits eNOS Activation by Increasing Caveolin-1 Half-Life and its Binding with eNOS in Vascular Endothelial Cells

2009 ◽  
Vol 4 ◽  
pp. S91-S92
Author(s):  
Ming-Jui Hung ◽  
Wen-Jin Cherng ◽  
Ming-Yow Hung ◽  
Hsiao-Ting Wu ◽  
Jong-Hwei S. Pang
Oncotarget ◽  
2017 ◽  
Vol 8 (44) ◽  
pp. 76165-76173 ◽  
Author(s):  
Hongping Xu ◽  
Liwei Zhang ◽  
Wei Chen ◽  
Jiazhou Xu ◽  
Ruting Zhang ◽  
...  

2018 ◽  
Vol 315 (5) ◽  
pp. H1477-H1485 ◽  
Author(s):  
Kimiko Yamamoto ◽  
Hiromi Imamura ◽  
Joji Ando

Vascular endothelial cells (ECs) sense and transduce hemodynamic shear stress into intracellular biochemical signals, and Ca2+ signaling plays a critical role in this mechanotransduction, i.e., ECs release ATP in the caveolae in response to shear stress and, in turn, the released ATP activates P2 purinoceptors, which results in an influx into the cells of extracellular Ca2+. However, the mechanism by which the shear stress evokes ATP release remains unclear. Here, we demonstrated that cellular mitochondria play a critical role in this process. Cultured human pulmonary artery ECs were exposed to controlled levels of shear stress in a flow-loading device, and changes in the mitochondrial ATP levels were examined by real-time imaging using a fluorescence resonance energy transfer-based ATP biosensor. Immediately upon exposure of the cells to flow, mitochondrial ATP levels increased, which was both reversible and dependent on the intensity of shear stress. Inhibitors of the mitochondrial electron transport chain and ATP synthase as well as knockdown of caveolin-1, a major structural protein of the caveolae, abolished the shear stress-induced mitochondrial ATP generation, resulting in the loss of ATP release and influx of Ca2+ into the cells. These results suggest the novel role of mitochondria in transducing shear stress into ATP generation: ATP generation leads to ATP release in the caveolae, triggering purinergic Ca2+ signaling. Thus, exposure of ECs to shear stress seems to activate mitochondrial ATP generation through caveola- or caveolin-1-mediated mechanisms. NEW & NOTEWORTHY The mechanism of how vascular endothelial cells sense shear stress generated by blood flow and transduce it into functional responses remains unclear. Real-time imaging of mitochondrial ATP demonstrated the novel role of endothelial mitochondria as mechanosignaling organelles that are able to transduce shear stress into ATP generation, triggering ATP release and purinoceptor-mediated Ca2+ signaling within the cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Liza U. Ljungberg ◽  
Mulugeta M. Zegeye ◽  
Caroline Kardeby ◽  
Knut Fälker ◽  
Dirk Repsilber ◽  
...  

Background. Interleukin 6 (IL6) is a multifunctional cytokine produced by various cells, including vascular endothelial cells. IL6 has both pro- and non-/anti-inflammatory functions, and the response to IL6 is dependent on whether it acts via the membrane-bound IL6 receptor α (IL6Rα) (classic signaling) or the soluble form of the receptor (transsignaling). As human endothelial cells produce IL6 and at the same time express IL6Rα, we hypothesized that IL6 may have autocrine functions. Methods. Knockdown of IL6 in cultured human endothelial cells was performed using siRNA. Knockdown efficiency was evaluated using ELISA. RNA sequencing was employed to characterize the transcriptional consequence of IL6 knockdown, and Ingenuity Pathway Analysis was used to further explore the functional roles of IL6. Results. Knockdown of IL6 in cultured endothelial cells resulted in a 84-92% reduction in the release of IL6. Knockdown of IL6 resulted in dramatic changes in transcriptional pattern; knockdown of IL6 in the absence of soluble IL6Rα (sIL6Rα) led to differential regulation of 1915 genes, and knockdown of IL6 in the presence of sIL6Rα led to differential regulation of 1967 genes (fold change 1.5, false discovery rate<0.05). Pathway analysis revealed that the autocrine functions of IL6 in human endothelial cells are mainly related to basal cellular functions such as regulation of cell cycle, signaling, and cellular movement. Furthermore, we found that knockdown of IL6 activates functions related to adhesion, binding, and interaction of endothelial cells, which seem to be mediated mainly via STAT3. Conclusion. In this study, a large number of novel genes that are under autocrine regulation by IL6 in human endothelial cells were identified. Overall, our data indicate that IL6 acts in an autocrine manner to regulate basal cellular functions, such as cell cycle regulation, signaling, and cellular movement, and suggests that the autocrine functions of IL6 in human endothelial cells are mediated via IL6 classic signaling.


2001 ◽  
Vol 269 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Tomoh Matsumiya ◽  
Tadaatsu Imaizumi ◽  
Koji Fujimoto ◽  
Xuefan Cui ◽  
Takeo Shibata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document