scholarly journals Mapping of QTL conferring leaf rust resistance in Chinese wheat lines W014204 and Fuyu 3 at adult plant stage

2016 ◽  
Vol 15 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Ai-yong QI ◽  
Pei-pei ZHANG ◽  
Yue ZHOU ◽  
Zhan-jun YAO ◽  
Zai-feng LI ◽  
...  
2020 ◽  
Vol 110 (4) ◽  
pp. 892-899 ◽  
Author(s):  
Zhikang Li ◽  
Chan Yuan ◽  
Sybil A. Herrera-Foessel ◽  
Mandeep S. Randhawa ◽  
Julio Huerta-Espino ◽  
...  

The durum wheat lines Heller#1 and Dunkler from the International Maize and Wheat Improvement Center Global Wheat Program showed moderate and stable adult plant resistance to leaf rust under high disease pressure over field environments in northwestern Mexico. Leaf rust phenotyping was performed on two recombinant inbred line (RIL) populations derived from crosses of Heller#1 and Dunkler with the susceptible parent Atred#2, conducted under artificially induced Puccinia triticina epidemics in 2013, 2014, 2015, and 2016. The Atred#2 × Heller#1 and Atred#2 × Dunkler populations were genotyped by single nucleotide polymorphism (SNP) platforms and diversity arrays technology markers, respectively. Four leaf rust resistance quantitative trait loci were detected simultaneously in the two RIL populations: Lr46, QLr.cim-2BC, QLr.cim-5BL, and QLr.cim-6BL based on phenotypic data across all four crop seasons. They explained 11.7 to 46.8%, 7.2 to 26.1%, 8.4 to 24.1%, and 12.4 to 28.5%, respectively, of the phenotypic variation for leaf rust resistance in Atred#2 × Heller#1 and 16.3 to 56.6%, 6.7 to 15.7%, 4.1 to 10.1%, and 5.1 to 20.2% of the variation in the Atred#2 × Dunkler population. Only the resistance allele of QLr.cim-2BC was from the susceptible parent Atred#2, and resistance alleles at other loci came from the resistant parents Heller#1 and Dunkler. The SNP markers closely linked to Lr46 and QLr.cim-2BC were converted to kompetitive allele specific PCR markers for use in marker-assisted selection to improve leaf rust resistance through crosses with Heller#1 and Dunkler sources.


2014 ◽  
Vol 104 (12) ◽  
pp. 1322-1328 ◽  
Author(s):  
Alexander Loladze ◽  
Dhouha Kthiri ◽  
Curtis Pozniak ◽  
Karim Ammar

Leaf rust, caused by Puccinia triticina, is one of the main fungal diseases limiting durum wheat production. This study aimed to characterize previously undescribed genes for leaf rust resistance in durum wheat. Six different resistant durum genotypes were crossed to two susceptible International Maize and Wheat Improvement Center (CIMMYT) lines and the resulting F1, F2, and F3 progenies were evaluated for leaf rust reactions in the field and under greenhouse conditions. In addition, allelism tests were conducted. The results of the study indicated that most genotypes carried single effective dominant or recessive seedling resistance genes; the only exception to this was genotype Gaza, which carried one adult plant and one seedling resistance gene. In addition, it was concluded that the resistance genes identified in the current study were neither allelic to LrCamayo or Lr61, nor were they related to Lr3 or Lr14a, the genes that already are either ineffective or are considered to be vulnerable for breeding purposes. A complicated allelic or linkage relationship between the identified genes is discussed. The results of the study will be useful for breeding for durable resistance by creating polygenic complexes.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 943
Author(s):  
Pakeerathan Kandiah ◽  
Mumta Chhetri ◽  
Matthew Hayden ◽  
Michael Ayliffe ◽  
Harbans Bariana ◽  
...  

Among the rust diseases, leaf rust of wheat caused by Puccinia triticina, is the most prevalent worldwide and causes significant yield losses. This study aimed to determine the genomic location of loci that control adult plant resistance (APR) to leaf rust in the pre-Green Revolution landrace accession, Aus27506, from the “Watkins Collection”. An Aus27506/Aus27229-derived F7 recombinant inbred line (RIL) population was screened under field conditions across three cropping seasons and genotyped with the iSelect 90K Infinium SNP bead chip array. One quantitative trait loci (QTL) on each of the chromosomes 1BL, 2B and 2DL explained most of the leaf rust response variation in the RIL population, and these were named QLr.sun-1BL, QLr.sun-2B and QLr.sun-2DL, respectively. QLr.sun-1BL and QLr.sun-2DL were contributed by Aus27506. QLr.sun-1BL is likely Lr46, while QLr.sun-2DL appeared to be a new APR locus. The alternate parent, Aus27229, carried the putatively new APR locus QLr.sun-2B. The comparison of average severities among RILs carrying these QTL in different combinations indicated that QLr.sun-2B does not interact with either of the other two QTL; however, the combination of QLr.sun-1BL and QLr.sun-2DL reduced disease severity significantly. In planta fungal quantification assays validated these results. The RILs carrying QLr.sun-1BL and QLr.sun-2DL did not differ significantly from the parent Aus27506 in terms of resistance. Aus27506 can be used as a source of adult plant leaf rust resistance in breeding programs.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 853-857 ◽  
Author(s):  
S. Elyasi-Gomari ◽  
V. K. Panteleev

In 2002 and 2003, 1,300 isolates of Puccinia recondita f. sp. tritici were obtained from six commercial cultivars of wheat at three locations in the eastern forest-steppe region of Ukraine. All isolates were tested for virulence on an international set of eight differential cultivars. Seventeen known wheat leaf rust races and several new, unnamed races were identified. The most common races in each year were races 61, 149, and 192. In 2003, up to 20 isolates each of the seven most common leaf rust races plus 8 to 10 isolates of unnamed races were tested for virulence to 35 near-isogenic wheat lines with different single Lr genes for leaf rust resistance. Isolates were polymorphic for virulence on Lr1, Lr2a, Lr2b, Lr2c, Lr9, Lr19, Lr23, Lr26, and the combination Lr27 + Lr31. No isolates were found virulent on Lr24, Lr25, or Lr28, and few isolates were virulent on Lr9. Few isolates of known races but most isolates of the new, unnamed races were virulent on Lr19. The 35 Lr gene lines also were exposed to mixed-race inoculum in field plots to tests effectiveness of their resistance. Lines with Lr24, Lr25, and Lr28 suffered no leaf rust damage in the field, and lines with Lr9, Lr18, Lr35, Lr36, and the combination Lr27 + Lr31 showed less than 10% severity.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 530-537 ◽  
Author(s):  
E. R. Kerber ◽  
P. L. Dyck

A partially dominant gene for adult-plant leaf rust resistance together with a linked, partially dominant gene for stem rust resistance were transferred to the hexaploid wheat cultivar 'Marquis' from an amphiploid of Aegilops speltoides × Triticum monococcum by direct crossing and backcrossing. Pathological evidence indicated that the alien resistance genes were derived from Ae. speltoides. Differential transmission of the resistance genes through the male gametes occurred in hexaploid hybrids involving the resistant 'Marquis' stock and resulted in distorted segregation ratios. In heterozygotes, pairing between the chromosome arm with the alien segment and the corresponding arm of the normal wheat chromosome was greatly reduced. The apparent close linkage between the two resistance genes, 3 ± 1.07 crossover units, was misleading because of this decrease in pairing in the presence of the 5B diploidizing mechanism. The newly identified gene for adult-plant leaf rust resistance, located on chromosome 2B, is different from adult-plant resistance genes Lr12, Lr13, and Lr22 and from that in the hexaploid accession PI250413; it has been designated Lr35. It is not known whether the newly transferred gene for stem rust resistance differs from Sr32, also derived from Ae. speltoides and located on chromosomes 2B.Key words: hexaploid, Triticum, Aegilops, aneuploid, Puccinia graminis, Puccinia recondita.


Sign in / Sign up

Export Citation Format

Share Document