scholarly journals Virulence Polymorphism of Puccinia recondita f. sp. tritici and Effectiveness of Lr Genes for Leaf Rust Resistance of Wheat in Ukraine

Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 853-857 ◽  
Author(s):  
S. Elyasi-Gomari ◽  
V. K. Panteleev

In 2002 and 2003, 1,300 isolates of Puccinia recondita f. sp. tritici were obtained from six commercial cultivars of wheat at three locations in the eastern forest-steppe region of Ukraine. All isolates were tested for virulence on an international set of eight differential cultivars. Seventeen known wheat leaf rust races and several new, unnamed races were identified. The most common races in each year were races 61, 149, and 192. In 2003, up to 20 isolates each of the seven most common leaf rust races plus 8 to 10 isolates of unnamed races were tested for virulence to 35 near-isogenic wheat lines with different single Lr genes for leaf rust resistance. Isolates were polymorphic for virulence on Lr1, Lr2a, Lr2b, Lr2c, Lr9, Lr19, Lr23, Lr26, and the combination Lr27 + Lr31. No isolates were found virulent on Lr24, Lr25, or Lr28, and few isolates were virulent on Lr9. Few isolates of known races but most isolates of the new, unnamed races were virulent on Lr19. The 35 Lr gene lines also were exposed to mixed-race inoculum in field plots to tests effectiveness of their resistance. Lines with Lr24, Lr25, and Lr28 suffered no leaf rust damage in the field, and lines with Lr9, Lr18, Lr35, Lr36, and the combination Lr27 + Lr31 showed less than 10% severity.

1981 ◽  
Vol 23 (3) ◽  
pp. 475-480 ◽  
Author(s):  
D. R. Knott ◽  
J. Dvořák

Eleven lines of wheat (Triticum aestivum L.) carrying resistance to leaf rust (Puccinia recondita Rob. ex. Desm.) derived from five accessions of Triticum speltoides Tausch were grown in yield tests in 1977 and 1979. The grain was tested for quality characteristics in both years. Although the lines had been backcrossed four or five times to either Manitou or Neepawa, only four of the eleven showed any real promise of equalling their recurrent parent in agronomic and quality characteristics. Lines derived from the same accession of T. speltoides were surprisingly variable. The generally deleterious effects of the transferred chromatin are due either to genes linked to the genes for leaf rust resistance plus incomplete compensation by the speltoides chromosome segment for the aestivum segment it replaced, or to the effects of additional translocations that were not eliminated during backcrossing. A second cycle of homoeologous recombination is proposed as a way to eliminate some of the deleterious genes.


1995 ◽  
Vol 73 (7) ◽  
pp. 1081-1088 ◽  
Author(s):  
J. A. Kolmer

A heterogeneous population of Puccinia recondita f.sp. tritici developed from randomly mated pycnial infections on Thalictrum speciosissimum was selected for 12 generations on three multilines composed of Thatcher wheat lines near-isogenic for leaf rust resistance genes. Multiline 1 was composed of 20% each of lines near-isogenic for resistance genes Lr2a, Lr3ka, Lr11, Lr17, and Lr24. Multiline 2 was composed of equal proportions each of Thatcher and the five near-isogenic lines in multiline 1. Multiline 3 was composed of 50% Thatcher and 10% each of the five near-isogenic lines. Diversity of virulence phenotypes as measured by the Shannon index declined most in the population selected on multiline 1. Phenotypes of P. r. tritici with virulence to three of the five resistance genes in the multilines were the predominant isolates in all three populations after 12 generations of selection. Frequency of phenotypes with virulence to resistance genes Lr2a and Lr11 significantly increased in all three populations. Virulence to Lr11 significantly increased in the multiline 3 population, and virulence to Lr24 increased in populations from multilines 2 and 3. Frequency of phenotypes with virulence to Lr3ka did not significantly change in any of the populations. Virulence phenotypes with an intermediate number of virulences appeared to have fitness advantage relative to other isolates on the three host multilines. These results indicate that use of wheat multilines may not necessarily stabilize selection for virulence complexity in P. r. tritici populations. Key words: mixtures, Triticum aestivum, wheat leaf rust.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1076-1085 ◽  
Author(s):  
M. Niranjana ◽  
Vinod ◽  
J.B. Sharma ◽  
Niharika Mallick ◽  
S.M.S. Tomar ◽  
...  

Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.


2011 ◽  
Vol 10 (16) ◽  
pp. 3051-3054 ◽  
Author(s):  
Hussain Fida ◽  
Ashraf M ◽  
A Hameed Muhammad ◽  
Hussain Nisar ◽  
Ahmad Sial Riaz

2016 ◽  
Vol 15 (1) ◽  
pp. 18-28 ◽  
Author(s):  
Ai-yong QI ◽  
Pei-pei ZHANG ◽  
Yue ZHOU ◽  
Zhan-jun YAO ◽  
Zai-feng LI ◽  
...  

2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 593-595
Author(s):  
M. Gál ◽  
L. Szunics ◽  
G. Vida ◽  
Lu. Szunics ◽  
O. Veisz ◽  
...  

The efficiency of leaf rust resistance genes in adult plants was studied on near-isogenic lines of Thatcher carrying known leaf rust resistance genes in the artificially inoculated leaf rust nursery of the Agricultural Research Institute of the Hungarian Academy of Sciences in Martonvásár over a five-year period (1997–2001). Eight of the wheat lines tested (Lr9, Lr19, Lr23, Lr24, Lr25, Lr29, Lr35, Lr37) exhibited little or no infection. Lines carrying genes Lr13, Lr44 and LrB were resistant in two years and those carrying Lr34, Lr38 and LrW in three years, after which they suffered moderate or heavy infection. Three lines (Lr12, Lr17, Lr32) proved to be moderately resistant. The majority of the wheat lines tested became heavily infected.


1977 ◽  
Vol 19 (2) ◽  
pp. 355-358 ◽  
Author(s):  
P. L. Dyck ◽  
E. R. Kerber

The inheritance of seedling resistance to leaf rust (Puccinia recondita) was studied in wheat (Triticum aestivum L.) cultivars Rafaela and EAP 26127. Rafaela has genes Lr14b and Lr17 while EAP 26127 has Lr17. Lr17 was located on chromosome 2A, possibly the short arm, and was independent of Lr11.


2020 ◽  
Vol 110 (4) ◽  
pp. 892-899 ◽  
Author(s):  
Zhikang Li ◽  
Chan Yuan ◽  
Sybil A. Herrera-Foessel ◽  
Mandeep S. Randhawa ◽  
Julio Huerta-Espino ◽  
...  

The durum wheat lines Heller#1 and Dunkler from the International Maize and Wheat Improvement Center Global Wheat Program showed moderate and stable adult plant resistance to leaf rust under high disease pressure over field environments in northwestern Mexico. Leaf rust phenotyping was performed on two recombinant inbred line (RIL) populations derived from crosses of Heller#1 and Dunkler with the susceptible parent Atred#2, conducted under artificially induced Puccinia triticina epidemics in 2013, 2014, 2015, and 2016. The Atred#2 × Heller#1 and Atred#2 × Dunkler populations were genotyped by single nucleotide polymorphism (SNP) platforms and diversity arrays technology markers, respectively. Four leaf rust resistance quantitative trait loci were detected simultaneously in the two RIL populations: Lr46, QLr.cim-2BC, QLr.cim-5BL, and QLr.cim-6BL based on phenotypic data across all four crop seasons. They explained 11.7 to 46.8%, 7.2 to 26.1%, 8.4 to 24.1%, and 12.4 to 28.5%, respectively, of the phenotypic variation for leaf rust resistance in Atred#2 × Heller#1 and 16.3 to 56.6%, 6.7 to 15.7%, 4.1 to 10.1%, and 5.1 to 20.2% of the variation in the Atred#2 × Dunkler population. Only the resistance allele of QLr.cim-2BC was from the susceptible parent Atred#2, and resistance alleles at other loci came from the resistant parents Heller#1 and Dunkler. The SNP markers closely linked to Lr46 and QLr.cim-2BC were converted to kompetitive allele specific PCR markers for use in marker-assisted selection to improve leaf rust resistance through crosses with Heller#1 and Dunkler sources.


Sign in / Sign up

Export Citation Format

Share Document