Non-invasive detection of genomic imbalances in Hodgkin/Reed-Sternberg cells in early and advanced stage Hodgkin's lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study

2015 ◽  
Vol 2 (2) ◽  
pp. e55-e65 ◽  
Author(s):  
Peter Vandenberghe ◽  
Iwona Wlodarska ◽  
Thomas Tousseyn ◽  
Luc Dehaspe ◽  
Daan Dierickx ◽  
...  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Brian C.-H. Chiu ◽  
Chang Chen ◽  
Qiancheng You ◽  
Rudyard Chiu ◽  
Girish Venkataraman ◽  
...  

AbstractThe 5-methylcytosines (5mC) have been implicated in the pathogenesis of diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the role of 5-hydroxymethylcytosines (5hmC) that are generated from 5mC through active demethylation, in lymphomagenesis is unknown. We profiled genome-wide 5hmC in circulating cell-free DNA (cfDNA) from 73 newly diagnosed patients with DLBCL and FL. We identified 294 differentially modified genes between DLBCL and FL. The differential 5hmC in the DLBCL/FL-differentiating genes co-localized with enhancer marks H3K4me1 and H3K27ac. A four-gene panel (CNN2, HMG20B, ACRBP, IZUMO1) robustly represented the overall 5hmC modification pattern that distinguished FL from DLBCL with an area under curve of 88.5% in the testing set. The median 5hmC modification levels in signature genes showed potential for separating patients for risk of all-cause mortality. This study provides evidence that genome-wide 5hmC profiles in cfDNA differ between DLBCL and FL and could be exploited as a non-invasive approach.


2018 ◽  
Vol 20 ◽  
Author(s):  
Ana Barbosa ◽  
Ana Peixoto ◽  
Pedro Pinto ◽  
Manuela Pinheiro ◽  
Manuel R. Teixeira

AbstractCirculating cell-free DNA (cfDNA) consists of small fragments of DNA that circulate freely in the bloodstream. In cancer patients, a fraction of cfDNA is derived from tumour cells, therefore containing the same genetic and epigenetic alterations, and is termed circulating cell-free tumour DNA. The potential use of cfDNA, the so-called ‘liquid biopsy’, as a non-invasive cancer biomarker has recently received a lot of attention. The present review will focus on studies concerning the potential clinical applications of cfDNA in ovarian cancer patients.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Gulfem D. Guler ◽  
Yuhong Ning ◽  
Chin-Jen Ku ◽  
Tierney Phillips ◽  
Erin McCarthy ◽  
...  

Abstract Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here, we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by 5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort (n = 64) in comparison with a non-cancer cohort (n = 243). Differential hydroxymethylation is found in thousands of genes, most significantly in genes related to pancreas development or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1, TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inactivation of TP53. Regularized regression models built using 5hmC densities in genes perform with AUC of 0.92 (discovery dataset, n = 79) and 0.92–0.94 (two independent test sets, n = 228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA (AUC = 0.88). These findings suggest that 5hmC changes enable classification of PDAC even during early stage disease.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
María Gallardo-Gómez ◽  
Sebastian Moran ◽  
María Páez de la Cadena ◽  
Vicenta Soledad Martínez-Zorzano ◽  
Francisco Javier Rodríguez-Berrocal ◽  
...  

2018 ◽  
Author(s):  
Francois Collin ◽  
Yuhong Ning ◽  
Tierney Phillips ◽  
Erin McCarthy ◽  
Aaron Scott ◽  
...  

AbstractPancreatic cancers are typically diagnosed at late stage where disease prognosis is poor as exemplified by a 5-year survival rate of 8.2%. Earlier diagnosis would be beneficial by enabling surgical resection or earlier application of therapeutic regimens. We investigated the detection of pancreatic ductal adenocarcinoma (PDAC) in a non-invasive manner by interrogating changes in 5-hydroxymethylation cytosine status (5hmC) of circulating cell free DNA in the plasma of a PDAC cohort (n=51) in comparison with a non-cancer cohort (n=41). We found that 5hmC sites are enriched in a disease and stage specific manner in exons, 3’UTRs and transcription termination sites. Our data show that 5hmC density is reduced in promoters and histone H3K4me3-associated sites with progressive disease suggesting increased transcriptional activity. 5hmC density is differentially represented in thousands of genes, and a stringently filtered set of the most significant genes points to biology related to pancreas (GATA4, GATA6, PROX1, ONECUT1) and/or cancer development (YAP1, TEAD1, PROX1, ONECUT1, ONECUT2, IGF1 and IGF2). Regularized regression models were built using 5hmC densities in statistically filtered genes or a comprehensive set of highly variable 5hmC counts in genes and performed with an AUC = 0.94-0.96 on training data. We were able to test the ability to classify PDAC and non-cancer samples with the Elastic net and Lasso models on two external pancreatic cancer 5hmC data sets and found validation performance to be AUC = 0.74-0.97. The findings suggest that 5hmC changes enable classification of PDAC patients with high fidelity and are worthy of further investigation on larger cohorts of patient samples.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2592-2592
Author(s):  
Nicholas J. Short ◽  
Keyur Patel ◽  
Maher Albitar ◽  
Miguel Franquiz ◽  
Rashmi Kanagal-Shamanna ◽  
...  

Background: Circulating cell-free DNA (ccfDNA) is highly fragmented DNA in plasma that is released by normal or tumor cells when they undergo apoptosis or necrosis. ccfDNA allows for non-invasive sampling of somatic genomic alterations and is informative in various solid tumors, including as a marker of measurable residual disease (MRD). We sought to assess the utility of baseline assessment and tracking of leukemia-associated mutations through peripheral blood sampling of ccfDNA in patients (pts) with acute leukemias. Methods: Plasma ccfDNA was isolated and analyzed using a next-generation sequencing (NGS) assay of 275 genes. This NGS analysis is based on Single Primer Extension library preparation with unique molecular identifier (Qiagen, Germantown, MD); a sequence coverage ≥ 100X (after removing duplicates) was required. Amplicon-based NGS was also performed on DNA extracted from the bone marrow (BM) in a CLIA-certified molecular diagnostics laboratory. This BM panel detects mutations in the coding sequence of 28 leukemia-associated genes, with an analytic sensitivity of 5-10%. The ccfDNA panel included all 28 genes evaluated on the BM NGS panel (ABL1, ASXL1, BRAF, DNMT3A, EGFR, EZH2, FLT3, GATA1, GATA2, HRAS, IDH1, IDH2, IKZF1, JAK2, KIT, KRAS, MDM2, MLL, MPL, MYD88, NOTCH1, NPM1, NRAS, PTPN11, RUNX1, TET2, TP53, WT1). Established bioinformatics pipelines were used to identify somatic variants. Results: Twenty-four pts (AML, n=22; ALL, n=2) underwent paired ccfDNA and BM sequencing at diagnosis prior to receiving frontline intensive chemotherapy. For baseline samples, ccfDNA was collected a median of 6 days after BM collection (range, 0-27 days) and a median of 0.5 days after start of induction chemotherapy (range, -7 to 7 days). Eleven pts (46%) also had ccfDNA collected at ≥1 time point during remission. Among the 28 genes of interest, the median number of mutations per pt detected in BM and in ccfDNA was 1 (range, 0-4) for both assays (P=0.39). A total of 40 mutations were detected: 18 mutations (45%) were detected by both methods, 7 (18%) were detected only in ccfDNA, and 15 (38%) were detected only in BM. Time from start of chemotherapy until ccfDNA collection did not appear to impact the concordance of ccfDNA and BM mutation analysis (P=0.87). Among mutations detected by ccfDNA in baseline samples, the median variant allelic frequency (VAF) was 33.7% (range, 2.7-90.8%). Among the 18 overlapping mutations, the concordance of VAF assessment by both methods was high (R2 = 0.849). Mutations detected by only one of the two methods were generally of lower VAF than those detected by both methods, suggesting that either method may miss small subclonal populations. The median VAF of mutations (as measured in ccfDNA) that were detected by both methods was higher than those detected only in ccfDNA (39.8% vs 25.2%, respectively; P=0.04); similarly, the median VAF of mutations (as measured in BM) that were detected by both methods was higher than those detected only in BM (40.2% vs 6.6%; P=0.001). Among the 7 mutations detected only by ccfDNA, ASXL1 was detected in 2 pts, WT1 in 1 pt, IDH1 in 1 pt, and BRAF and two EGFR mutations in 1 pt. Among the 5 pts in whom mutations were detected in ccfDNA but not BM, 2 eventually relapsed. In both pts, the discordant mutation (IDH1 and ASXL1) was detected in the relapse BM, suggesting that these were true mutations that were missed by NGS of the baseline BM. ccfDNA detected leukemia-associated mutations during remission that appeared to herald overt relapse (Figure 1). Two pts with t(8;21) AML developed new RUNX1 mutations detected by ccfDNA while in remission and subsequently relapsed 3 months and 14 months later. In both of these pts, the new RUNX1 mutation was confirmed in the BM at the time of morphological relapse. Another pt with AML had persistent TP53 and TET2 mutations detected by ccfDNA 1 month after allogeneic stem cell transplant and subsequently relapsed 1 month later. Conclusions: This study demonstrates that sequencing of ccfDNA can identify prognostic or targetable mutations not detected by BM NGS. However, true mutations were missed by both ccfDNA and BM analysis, suggesting that these methodologies may be complementary in the assessment and monitoring of pts with leukemia. The use of ccfDNA as a non-invasive method to detect mutations and track MRD in AML and other leukemias should be evaluated in larger, prospective cohorts. Disclosures Short: Takeda Oncology: Consultancy, Research Funding; AstraZeneca: Consultancy; Amgen: Honoraria. Jabbour:Amgen: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Cyclacel LTD: Research Funding; AbbVie: Consultancy, Research Funding; Adaptive: Consultancy, Research Funding; Takeda: Consultancy, Research Funding. Garcia-Manero:Amphivena: Consultancy, Research Funding; Helsinn: Research Funding; Novartis: Research Funding; AbbVie: Research Funding; Celgene: Consultancy, Research Funding; Astex: Consultancy, Research Funding; Onconova: Research Funding; H3 Biomedicine: Research Funding; Merck: Research Funding. Kantarjian:BMS: Research Funding; Amgen: Honoraria, Research Funding; Agios: Honoraria, Research Funding; Immunogen: Research Funding; Takeda: Honoraria; Novartis: Research Funding; Ariad: Research Funding; Astex: Research Funding; Pfizer: Honoraria, Research Funding; Actinium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Research Funding; Jazz Pharma: Research Funding; Cyclacel: Research Funding; AbbVie: Honoraria, Research Funding. Ravandi:Macrogenix: Consultancy, Research Funding; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Xencor: Consultancy, Research Funding; Menarini Ricerche: Research Funding; Cyclacel LTD: Research Funding; Selvita: Research Funding.


Med ◽  
2021 ◽  
Vol 2 (10) ◽  
pp. 1171-1193.e11 ◽  
Author(s):  
Sophia Sobesky ◽  
Laman Mammadova ◽  
Melita Cirillo ◽  
Esther E.E. Drees ◽  
Julia Mattlener ◽  
...  

2013 ◽  
Vol 67 (8) ◽  
pp. 723-730 ◽  
Author(s):  
Mariangela Zane ◽  
Marco Agostini ◽  
Maria Vittoria Enzo ◽  
Eric Casal Ide ◽  
Paola Del Bianco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document