Towards imperfection insensitive buckling response of shell structures-shells with plate-like post-buckled responses

2016 ◽  
Vol 120 (1224) ◽  
pp. 233-253 ◽  
Author(s):  
S. C. White ◽  
P. M. Weaver

ABSTRACTThe imperfection sensitivity of cylindrical panels under compression loading is shown to be not only reduced but effectively eliminated using stiffness tailoring techniques. Shells are designed with variable angle-tow (VAT) laminae, giving their laminates variable-stiffness properties over the surface co-ordinates. By employing an asymptotic model of the non-linear shell behaviour and a genetic algorithm, the post-buckling stability was maximised with respect to the VAT design variables. Results for optimised straight-fibre and VAT shells are presented in comparison with quasi-isotropic designs. In the straight-fibre case, small improvements in the post-buckling stability are shown to be possible but at the expense of the buckling load. In the VAT case, on the other hand, considerable improvements in the post-buckling stability are obtained and drops in axial stiffness and load associated with buckling are reduced to negligible levels. The improvements are shown to be a result of a benign membrane stress distribution prior to buckling and a localisation of the buckling mode. The asymptotic results are compared with non-linear finite-element analyses and are found to be in good agreement. Potential future multi-objective optimisation studies are discussed.

2013 ◽  
Vol 351-352 ◽  
pp. 492-496 ◽  
Author(s):  
Li Wan ◽  
Lei Chen

Many elliptical shells are used in structural applications in which the dominant loading condition is axial compression. Due to the fact that the radius varies along the cross-section midline, the buckling behavior is more difficult to identify than those of cylindrical shells. The general concerned aspects in cylindrical shell buckling analyses such as the buckling mode, the pre-buckling deformation and post-buckling deformation are all quite different related to specific elliptical shell geometry. The buckling behavior of elliptical cylindrical shells with uniform thickness has been widely studied by many researchers. However, the thickness around the circumference may change for some specific structural forms, the femoral neck for example, which makes the buckling behavior more complex. It is known that the buckling strength of thin cylindrical shells is quite sensitive to imperfections, so it is natural to explore the imperfection sensitivity of elliptical shells. This paper explores the buckling behavior of imperfect elliptical shells under axial compression. It is hoped that the results will make a useful contribution in this field.


2000 ◽  
Author(s):  
Philippe Le Grognec ◽  
Anh Le Van

Abstract An elastoplastic thin shell model is presented in this work in order to compute the buckling and post-buckling behavior of cylindrical shell-type structures. Standard assumptions in the shell kinematics allow us to develop a large deformation and finite rotation model for thin shells from the three-dimensional continuum. An elastoplastic constitutive model for thin shells is derived from the three-dimensional framework, assuming the plane stress condition. The von Mises yield criterion is adopted including non-linear isotropic and linear kinematic hardening. The resulting non-linear system is solved by a Newton-Raphson solution procedure, including the consistent linearization of the shell kinematics and the elastoplastic material model. The high non-linearities due to the buckling-type instabilities, especially those occuring in the neighbourhood of critical points, necessitate the use of an appropriate step-length control. An arc-length method has been successfully implemented for passing through limit points (load or displacement peaks) where pure load or displacement controls fail. The proposed method is effective in handling both sharp snap-throughs and snap-backs. Two numerical examples are presented in view of the assessment of the proposed approach and a particular attention is devoted to the post-buckling of hollow cylinders under axial compression. We identify several types of buckling mode for these structures, among which the axisymmetric mode, the “diamond” mode and the “elephant foot” mode, depending on geometry and boundary conditions.


Author(s):  
Edvin Hanken ◽  
Evelyn R. Hollingsworth ◽  
Lars S. Fagerland

For fast track pipeline projects the need for costly installation vessels and sophisticated materials for rigid pipeline water injection systems, have made flexible pipelines a competitive alternative. They can be installed with less costly construction vessels, provide a competitive lead time and a corrosion resistant compliant material. Flexible pipelines have relative high axial stiffness and low non-linear bending stiffness which is a challenge to model correctly with FE for in-place analyses of pipelines. Whilst some FE programs can model the non-linear bending behaviour of a flexible pipeline at a given pressure, current FE tools do not include the effect of increased bending resistance as the system is pressurized. Therefore, a 3D FE model in ANSYS was developed to simulate the decoupled axial and nonlinear bending behaviour of a flexible, including the bend stiffening effect for increasing pressure. A description of the model is given in this paper. It will be demonstrated how the FE model can be used to simulate the 3D nonlinear catenary behaviour of an high pressure flexible pipeline tied into a manifold during pressurization. Due to high manifold hub loads during pressurization it is essential that such a model is capable of capturing all effects during pressurization to achieve an acceptable confidence level of the system integrity. It is also described how the FE model is used for upheaval buckling design, capturing non-linearities and load history effects that can reduce the conservatism in the design.


2011 ◽  
Vol 374-377 ◽  
pp. 2297-2300
Author(s):  
Hai Zhao ◽  
Ya Zhou Xu ◽  
Guo Liang Bai

The uncontrollable factors such as construction errors, material inhomogeneity, etc. will inevitably lead to a certain initial imperfections. It is generally known that the stochastic initial imperfection of the structure is an important factor for affecting structural stability and bearing capacity. Since these imperfections are random in nature, this paper proposes the method mainly based on the standard orthogonal basis to expand the stochastic field, taking into account the decomposition of the stochastic initial imperfections related to structures, which is projected in the buckling mode orthogonal basis. In the end, the article by the stability analysis example shows that this method can use less random variables effectively describing the original stochastic imperfection field, and efficiently search for the most unfavorable initial imperfection distribution form in order to ensure the imperfection sensitivity structures have a higher reliability, so it can be applied to large-scale engineering structure stochastic imperfection analysis.


2021 ◽  
pp. 1-37
Author(s):  
Guoyong Mao ◽  
Wei Hong ◽  
Martin Kaltenbrunner ◽  
Shaoxing Qu

Abstract Dielectric elastomer (DE) actuators are deformable capacitors capable of a muscle-like actuation when charged. When subjected to voltage, DE membranes coated with compliant electrodes may form wrinkles due to the Maxwell stress. Here, we develop a numerical approach based on the finite element method (FEM) to predict the morphology of wrinkled DE membranes mounted on a rigid frame. The approach includes two steps, I) pre-buckling and II) post-buckling. In step I, the first buckling mode of the DE membrane is investigated by substituting the Maxwell stress with thermal stress in the built-in function of the FEM platform SIMULIA Abaqus. In step II, we use this first buckling mode as an artificial geometric imperfection to conduct the post-buckling analysis. For this purpose, we develop an equivalent model to simulate the mechanical behavior of DEs. Based on our approach, the thickness distribution and the thinnest site of the wrinkled DE membranes subjected to voltage are investigated. The simulations reveal that the crests/troughs of the wrinkles are the thinnest sites around the center of the membrane and corroborate these findings experimentally. Finally, we successfully predict the wrinkles of DE membranes mounted on an isosceles right triangle frame with various sizes of wrinkles generated simultaneously. These results shed light on the fundamental understanding of wrinkled dielectric elastomers but may also trigger new applications such as programmable wrinkles for optical devices or their prevention in DE actuators.


2021 ◽  
Author(s):  
VINCENZO OLIVERI ◽  
GIOVANNI ZUCCO ◽  
MOHAMMAD ROUHI ◽  
ENZO COSENTINO ◽  
RONAN O’HIGGINS ◽  
...  

The design of a multi-part aerospace structural component, such as a wingbox, is a challenging process because of the complexity arising from assembly and integration, and their associated limitations and considerations. In this study, a design process of a stiffeners-integrated variable stiffness three-bay wingbox is presented. The wingbox has been designed for a prescribed buckling and post-buckling performance (a prescribed real testing scenario) and made from thermoplastic composite material system (Carbon-PEEK) with the total length of three meters. The stiffeners and spars are integrated into the top and bottom panels of the wingbox resulting a single-piece blended structure with no fasteners or joints. The bottom skin also has an elliptical cut-out for access purposes. The composite tows are steered around this cutout for strain concentration reduction purposes. The fiber/tow steering in the top skin bays (compression side) has also been considered for improved compression-induced buckling load carrying capacity. The proposed design has been virtually verified via high fidelity finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document