DESIGN AND ANALYSIS OF AN INTEGRATED THREE- BAY THERMOPLASTIC COMPOSITE WINGBOX

2021 ◽  
Author(s):  
VINCENZO OLIVERI ◽  
GIOVANNI ZUCCO ◽  
MOHAMMAD ROUHI ◽  
ENZO COSENTINO ◽  
RONAN O’HIGGINS ◽  
...  

The design of a multi-part aerospace structural component, such as a wingbox, is a challenging process because of the complexity arising from assembly and integration, and their associated limitations and considerations. In this study, a design process of a stiffeners-integrated variable stiffness three-bay wingbox is presented. The wingbox has been designed for a prescribed buckling and post-buckling performance (a prescribed real testing scenario) and made from thermoplastic composite material system (Carbon-PEEK) with the total length of three meters. The stiffeners and spars are integrated into the top and bottom panels of the wingbox resulting a single-piece blended structure with no fasteners or joints. The bottom skin also has an elliptical cut-out for access purposes. The composite tows are steered around this cutout for strain concentration reduction purposes. The fiber/tow steering in the top skin bays (compression side) has also been considered for improved compression-induced buckling load carrying capacity. The proposed design has been virtually verified via high fidelity finite element analysis.

Author(s):  
Anto´nio F. Mateus ◽  
Joel A. Witz

Plates are structural components that are able to provide support beyond compressive collapse, i.e. in the post-buckling regime. To date the criterion used to define plate failure under compressive loading is the plate maximum load carrying capacity which is identified as the peak of the associated load versus plate end-shortening curve. Recent advances in structural analysis techniques, such as nonlinear finite element analysis, have enabled the reduction of uncertainty that is embedded into the behaviour and strength prediction of new and in-service structures. Consequently, a new criterion for ultimate plate compressive strength is suggested and justified. This criterion is based on the unloaded edge resultant stress reaching yield. It is considered to be a suitable threshold of serviceability based on the relation between drop of strength versus the gain in plate end-shortening. In practical terms this means that a plate will be able to work in an extended range of end-shortenings.


Author(s):  
Atsushi Yamaguchi

Boilers and pressure vessels are heavily used in numerous industrial plants, and damaged equipment in the plants is often detected by visual inspection or non-destructive inspection techniques. The most common type of damage is wall thinning due to corrosion under insulation (CUI) or flow-accelerated corrosion (FAC), or both. Any damaged equipment must be repaired or replaced as necessary as soon as possible after damage has been detected. Moreover, optimization of the time required to replace damaged equipment by evaluating the load carrying capacity of boilers and pressure vessels with wall thinning is expected by engineers in the chemical industrial field. In the present study, finite element analysis (FEA) is used to evaluate the load carrying capacity in T-joints with wall thinning. Burst pressure is a measure of the load carrying capacity in T-joints with wall thinning. The T-joints subjected to burst testing are carbon steel tubes for pressure service STPG370 (JIS G3454). The burst pressure is investigated by comparing the results of burst testing with the results of FEA. Moreover, the maximum allowable working pressure (MAWP) of T-joints with wall thinning is calculated, and the safety margin for the burst pressure is investigated. The burst pressure in T-joints with wall thinning can be estimated the safety side using FEA regardless of whether the model is a shell model or a solid model. The MAWP is 2.6 MPa and has a safety margin 7.5 for burst pressure. Moreover, the MAWP is assessed the as a safety side, although the evaluation is too conservative for the burst pressure.


2011 ◽  
Vol 199-200 ◽  
pp. 749-753
Author(s):  
Xiao Bo Zuo ◽  
Jian Min Wang ◽  
Chao Liang Guan ◽  
Juan Li

The static performance of an aerostatic bearing with angled surface self-slot-compensation is analyzed. The consistent condition was applied to unitize the Reynolds equation of different forms and the finite element method (FEM) was used to solve the equation. The load carrying capacity (LCC) and the stiffness of the bearing was obtained and the influence of the geometric parameters was discussed. It is concluded that this self-compensating aerostatic bearing can achieve a good performance; the geometric parameters of the gap are interactive, and should be rationally matched.


1994 ◽  
Vol 61 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
M. Savoia ◽  
J. N. Reddy

The post-buckling of stiffened, cross-ply laminated, circular determine the effects of shell lamination scheme and stiffeners on the reduced load-carrying capacity. The effect of geometric imperfection is also included. The analysis is based on the layerwise shell theory of Reddy, and the “smeared stiffener” technique is used to account for the stiffener stiffness. Nu cylinders under uniform axial compression is investigated to merical results for stiffened and unstiffened cylinders are presented, showing that imperfection-sensitivity is strictly related to the number of nearly simultaneous buckling modes.


1993 ◽  
Vol 20 (4) ◽  
pp. 564-573 ◽  
Author(s):  
R. O. Foschi ◽  
F. Z. Yao

This paper presents a reliability analysis of wood I-joists for both strength and serviceability limit states. Results are obtained from a finite element analysis coupled with a first-order reliability method. For the strength limit state of load-carrying capacity, multiple failure modes are considered, each involving the interaction of several random variables. Good agreement is achieved between the test results and the theoretical prediction of variability in load-carrying capacity. Finally, a procedure is given to obtain load-sharing adjustment factors applicable to repetitive member systems such as floors and flat roofs. Key words: reliability, limit state design, wood composites, I-joist, structural analysis.


Author(s):  
Te Pei ◽  
Tong Qiu ◽  
Jeffrey A. Laman

Abstract The present study comprehensively evaluates the improvement in lateral load-carrying capacity of steel pipe piles by adding steel plates (fins) at grade level. This configuration of steel fin pile foundations (SFPFs) is effective for applications where high lateral loads are encountered and rapid pile installation is advantageous. An integrated finite element analysis (FEA) was conducted. The FEA utilized an Abaqus model, first developed to account for the nonlinear soil-pile interaction, and then calibrated and validated against well-documented experimental and filed tests in the literature. The validated FEA model was subsequently used to conduct a parametric study to understand the effect of fin geometry on the load transfer mechanism and the response of SFPFs subjected to lateral loading at pile head. The behavior of SFPFs at different displacement levels and load levels was studied. The effect of the relative density of soil on the performance of SFPFs was also investigated. Based on the numerical simulation results, the optimal fin width for maximum improvement in lateral load-carrying capacity was suggested and the underlining mechanism affecting the efficiency of fins was explained.


2011 ◽  
Vol 71-78 ◽  
pp. 898-902
Author(s):  
Yuan Qing Wang ◽  
Jong Su Sung ◽  
Yong Jiu Shi

Composite slab with steel sheeting deck is considered a continuous slab when it is under a constructional situation. Nevertheless, many recent researches are focused on simply supported slab. In order to determine the load carrying capacity regarding various rebar ratio on negative moment region, a numerical analysis was carried out by using finite element analysis. The result of analysis shows that the reinforced steel rebar increases load carrying capacity. Moreover, it has shown that the reinforced length of steel rebar also affect the load carrying capacity.


Author(s):  
Yogesh K S

Pile foundation is one of the effective forms of deep foundation. This is to be used where the load has to be transferred to deeper layers of soil and it can with stand uplift forces in foundations in expansive soil and also in case of floating foundations. The finite element method is one of the most versatile and comprehensive numerical technique which can be used for analysis of structures or solids of complex shapes and complicated boundary conditions. There are different variables which influence the load carrying capacity of pile foundation. But only some of those have significant influence on load carrying capacity. Here those variables are considered and the variation of load carrying capacity with the change in value of those variables is observed. Those variables are pile length and pile diameter, analysis of pile foundation was carried out to determine the ultimate load carrying capacity of pile for different lengths and diameters in cohesive soil, the corresponding settlement was also determined.


Most of the chemical industries are used with Polyurethane (PU) coated steel sample which is found that some chemical reaction and rusted in acidic bath solution becomes a problem in industry. For such problems composite materials can be of good solution which does not possess any reaction with working fluids (acids in our case). With composites there is complexity of manufacturing and high cost involvement, so as to avoid those simplified approach is used to get Flat plates made of Glass fiber reinforced in epoxy which is best solution for any acidic bath as it possesses high resistance to any reaction with itself. Glass fiber plates are cut into the size of dimension and with the help of adhesives joint the WFJ of I-Beam, there are two different types of adhesives used, araldite 2015 and Hundsman araldite are used. The hundsman araldite is found to get better performance of Web-Flange junction (WFJ) joint. Finite element analysis (FEA) is used to get initial validation and further it’s observed that Hundsman araldite failure strength on the web-flange junction is better. Also, additional cleat used with 4 mm, 12 mm for increasing the Web-Flange junction (WFJ) area to improve the Load carrying capacity of the Beam. The experimental analysis results clearly indicate that the emersion of the reinforced epoxy glass-fiber in the acidic bath solution for a certain period, there is no any reaction formed in the acidic bath and improved the behavior of the specimen. Results from FEA and experimental test have shown good correlations are obtained with improvement of failure strength on WFJ


Author(s):  
Rakesh Pokkula ◽  
T.V.K. Gupta

The requirement of increased turn around time and higher pay-load carrying capacity, weight reduction of components and systems is having much attention in railway industry. The present paper discusses about the Finite Element Analysis (FEA) carried out using ANSYS workbench on the modified design of a bolster in light weight freight bogies. The reduction in weight transforms into higher performance leading to lower power consumption. With this present study, although the modified bolster has not undergone any significant weight reduction, but the modifications in design has lead to increase in stiffeness and reduction in stresses generated for various loading conditions. Presently, bolsters fitted with wagons in Indian Railways are in operational for 20.32t to 22.9t axle load capacities for a variety of applications. The existing and modified bolsters are analysed in static conditions for different loads which includes a vertical load on centre plate, transverse loading and side bearing loading and a comparison has been made. The results on the modified bolster has shown 11% higher bending stiffness in vertical direction at the centre and 9% higher stiffness in tranverse direction as compared to the existing bolster.


Sign in / Sign up

Export Citation Format

Share Document