scholarly journals Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes

2016 ◽  
Vol 57 (73) ◽  
pp. 131-141 ◽  
Author(s):  
David E. Gwyther ◽  
Eva A. Cougnon ◽  
Benjamin K. Galton-Fenzi ◽  
Jason L. Roberts ◽  
John R. Hunter ◽  
...  

ABSTRACTWe present simulation results from a version of the Regional Ocean Modeling System modified for ice shelf/ocean interaction, including the parameterisation of basal melting by molecular diffusion alone. Simulations investigate the differences in melting for an idealised ice shelf experiencing a range of cold to hot ocean cavity conditions. Both the pattern of melt and the location of maximum melt shift due to changes in the buoyancy-driven circulation, in a different way to previous studies. Tidal forcing increases both the circulation strength and melting, with the strongest impact on the cold cavity case. Our results highlight the importance of including a complete melt parameterisation and tidal forcing. In response to the 2.4°C ocean warming initially applied to a cold cavity ice shelf, we find that melting will increase by about an order of magnitude (24 × with tides and 41 × without tides).

2020 ◽  
Author(s):  
Ole Richter ◽  
David E. Gwyther ◽  
Benjamin K. Galton-Fenzi ◽  
Kaitlin A. Naughten

Abstract. The Regional Ocean Modeling System (ROMS), including an ice shelf component, has been applied on a circum-Antarctic domain to derive estimates of ice shelf basal melting. Significant improvements made compared to previous models of this scale are the inclusion of tides and a horizontal spatial resolution of 2 km, which is sufficient to resolve onshelf heat transport by bathymetric troughs and eddy scale circulation. We run the model with ocean-atmosphere-sea ice conditions from the year 2007, to represent nominal present day climate. We force the ocean surface with buoyancy fluxes derived from sea ice concentration observations and wind stress from ERA-Interim atmospheric reanalysis. At the northern boundaries ocean conditions are derived from the ECCO2 reanalysis and tides are incorporated as sea surface height and barotropic currents. The accuracy of tidal height signals close to the coast is comparable to those simulated from widely-used barotropic tide models, while off-shelf hydrography agrees well with the Southern Ocean State Estimate (SOSE) model. On the shelf, most details of ice shelf-ocean interaction are consistent with results from regional modelling and observational studies, although a paucity of observational data (particularly taken during 2007) prohibits a full verification. We conclude that our improved model is well suited to derive a new estimate of present day Antarctic ice shelf melting at high resolution and is able to quantify its sensitivity to tides.


2021 ◽  
Author(s):  
Chen Zhao ◽  
Rupert Gladstone ◽  
Ben Galton-Fenzi ◽  
David Gwyther

<p>The ocean-driven basal melting has important implications for the stability of ice shelves in Antarctic, which largely affects the ice sheet mass balance, ocean circulation, and subsequently global sea level rise. Due to the limited observations in the ice shelf cavities, the couple ice sheet ocean models have been playing a critical role in examining the processes governing basal melting. In this study we use the Framework for Ice Sheet-Ocean Coupling (FISOC) to couple the Elmer/Ice full-stokes ice sheet model and the Regional Ocean Modeling System (ROMS) ocean model to model ice shelf/ocean interactions for an idealised three-dimensional domain. Experiments followed the coupled ice sheet–ocean experiments under the first phase of the Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP1). A periodic pattern in the simulated mean basal melting rates is found to be highly consistent with the maximum barotropic stream function and also the grounding line retreat row by row,  which is likely to be related with the gyre break down near the grounding line caused by some non-physical instability events from the ocean bottom. Sensitivity tests are carried out, showing that this periodic pattern is not sensitive to the choice of couple time intervals and horizontal eddy viscosities but sensitive to vertical resolution in the ocean model, the chosen critical water column thickness in the wet-dry scheme, and the tracer properties for the nudging dry cells at the ice-ocean interface boundary. Further simulations are necessary to better explain the mechanism involved in the couple ice-ocean system, which is very significant for its application on the realistic ice-ocean systems in polar regions.</p>


2014 ◽  
Vol 44 (11) ◽  
pp. 2951-2971 ◽  
Author(s):  
Shih-Nan Chen

Abstract A recent numerical study by Isobe showed that imposing alongshore tidal forcing on buoyant coastal discharge enhances the net freshwater transport in the coastal currents. The mechanisms for this transport enhancement are studied using a three-dimensional, primitive equation ocean model [Regional Ocean Modeling System (ROMS)]. Lagrangian drifters are used to trace the freshwater transport paths. It is found that the river plume bulge circulation largely follows the rigid-body motion (i.e., constant vorticity). The buoyant fluid near the bulge’s outer edge is thinner and faster, behaving as a baroclinic jet. The bulge currents then split after impinging on the coast. The outer fluid feeds the downshelf-flowing coastal currents, while the inner fluid recirculates to form the bulge. The coastal current transport estimated from the present and prior studies corresponds well to a baroclinic jet theory, with the incident angle of bulge currents at the coast being a key parameter. Without tides, the bulge is approximately circular. The incident angle measured with respect to the cross-shore axis is small. With tides, the convergence of tidal momentum fluxes near the upshelf plume front leads to a positive pressure anomaly, which acts to compress the bulge shoreward. As a result, the incident angle increases, which in turn enhances the downshelf momentum input, thus increasing the freshwater transport in the coastal currents. Finally, the parameter space for coastal current transport in the presence of tidal forcing is explored with a conceptual model. A few observational examples are given.


2015 ◽  
Vol 28 (15) ◽  
pp. 6067-6085 ◽  
Author(s):  
Michael S. Dinniman ◽  
John M. Klinck ◽  
Le-Sheng Bai ◽  
David H. Bromwich ◽  
Keith M. Hines ◽  
...  

Abstract Oceanic melting at the base of the floating Antarctic ice shelves is now thought to be a more significant cause of mass loss for the Antarctic ice sheet than iceberg calving. In this study, a 10-km horizontal-resolution circum-Antarctic ocean–sea ice–ice shelf model [based on the Regional Ocean Modeling System (ROMS)] is used to study the delivery of ocean heat to the base of the ice shelves. The atmospheric forcing comes from the ERA-Interim reanalysis (~80-km resolution) and from simulations using the polar-optimized Weather Research and Forecasting Model (30-km resolution), where the upper atmosphere was relaxed to the ERA-Interim reanalysis. The modeled total basal ice shelf melt is low compared to observational estimates but increases by 14% with the higher-resolution winds and just 3% with both the higher-resolution winds and atmospheric surface temperatures. The higher-resolution winds lead to more heat being delivered to the ice shelf cavities from the adjacent ocean and an increase in the efficiency of heat transfer between the water and the ice. The higher-resolution winds also lead to changes in the heat delivered from the open ocean to the continental shelves as well as changes in the heat lost to the atmosphere over the shelves, and the sign of these changes varies regionally. Addition of the higher-resolution temperatures to the winds results in lowering, primarily during summer, the wind-driven increase in heat advected into the ice shelf cavities due to colder summer air temperatures near the coast.


2016 ◽  
Vol 43 (1) ◽  
pp. 250-255 ◽  
Author(s):  
Oliver J. Marsh ◽  
Helen A. Fricker ◽  
Matthew R. Siegfried ◽  
Knut Christianson ◽  
Keith W. Nicholls ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Masahiro Minowa ◽  
Shin Sugiyama ◽  
Masato Ito ◽  
Shiori Yamane ◽  
Shigeru Aoki

AbstractBasal melting of ice shelves is considered to be the principal driver of recent ice mass loss in Antarctica. Nevertheless, in-situ oceanic data covering the extensive areas of a subshelf cavity are sparse. Here we show comprehensive structures of temperature, salinity and current measured in January 2018 through four boreholes drilled at a ~3-km-long ice shelf of Langhovde Glacier in East Antarctica. The measurements were performed in 302–12 m-thick ocean cavity beneath 234–412 m-thick ice shelf. The data indicate that Modified Warm Deep Water is transported into the grounding zone beneath a stratified buoyant plume. Water at the ice-ocean interface was warmer than the in-situ freezing point by 0.65–0.95°C, leading to a mean basal melt rate estimate of 1.42 m a−1. Our measurements indicate the existence of a density-driven water circulation in the cavity beneath the ice shelf of Langhovde Glacier, similar to that proposed for warm-ocean cavities of larger Antarctic ice shelves.


2021 ◽  
Author(s):  
Jing Jin ◽  
Antony J. Payne ◽  
William Seviour ◽  
Christopher Bull

<p>The basal melting of the Amery Ice Shelf (AIS) in East Antarctica and its connections with the oceanic circulation are investigated by a regional ocean model. The simulated estimations of net melt rate over AIS from 1976 to 2005 vary from 1 to 2 m/yr depending primarily due to inflow of modified Circumpolar Deep Water (mCDW). Prydz Bay Eastern Costal Current (PBECC) and the eastern branch of Prydz Bay Gyre (PBG) are identified as two main mCDW intrusion pathways. The oceanic heat transport from both PBECC and PBG has significant seasonal variability, which is associated with the Antarctic Slope Current. The onshore heat transport has a long-lasting effect on basal melting. The basal melting is primarily driven by the inflowing water masses though a positive feedback mechanism. The intruding warm water masses destabilize the thermodynamic structure in the sub-ice shelf cavity therefore enhancing the overturning circulations, leading to further melting due to increasing heat transport. However, the inflowing saltier water masses due to sea-ice formation could offset the effect of temperature through stratifying the thermodynamic structure, then suppressing the overturning circulation and reducing the basal melting.</p>


2017 ◽  
Vol 63 (240) ◽  
pp. 731-744 ◽  
Author(s):  
JORGE BERNALES ◽  
IRINA ROGOZHINA ◽  
MAIK THOMAS

ABSTRACTIce-shelf basal melting is the largest contributor to the negative mass balance of the Antarctic ice sheet. However, current implementations of ice/ocean interactions in ice-sheet models disagree with the distribution of sub-shelf melt and freezing rates revealed by recent observational studies. Here we present a novel combination of a continental-scale ice flow model and a calibration technique to derive the spatial distribution of basal melting and freezing rates for the whole Antarctic ice-shelf system. The modelled ice-sheet equilibrium state is evaluated against topographic and velocity observations. Our high-resolution (10-km spacing) simulation predicts an equilibrium ice-shelf basal mass balance of −1648.7 Gt a−1 that increases to −1917.0 Gt a−1 when the observed ice-shelf thinning rates are taken into account. Our estimates reproduce the complexity of the basal mass balance of Antarctic ice shelves, providing a reference for parameterisations of sub-shelf ocean/ice interactions in continental ice-sheet models. We perform a sensitivity analysis to assess the effects of variations in the model set-up, showing that the retrieved estimates of basal melting and freezing rates are largely insensitive to changes in the internal model parameters, but respond strongly to a reduction of model resolution and the uncertainty in the input datasets.


Sign in / Sign up

Export Citation Format

Share Document