scholarly journals Noise masking method based on an effective ratio mask estimation in Gammatone channels

Author(s):  
Feng Bao ◽  
Waleed H. Abdulla

In computational auditory scene analysis, the accurate estimation of binary mask or ratio mask plays a key role in noise masking. An inaccurate estimation often leads to some artifacts and temporal discontinuity in the synthesized speech. To overcome this problem, we propose a new ratio mask estimation method in terms of Wiener filtering in each Gammatone channel. In the reconstruction of Wiener filter, we utilize the relationship of the speech and noise power spectra in each Gammatone channel to build the objective function for the convex optimization of speech power. To improve the accuracy of estimation, the estimated ratio mask is further modified based on its adjacent time–frequency units, and then smoothed by interpolating with the estimated binary masks. The objective tests including the signal-to-noise ratio improvement, spectral distortion and intelligibility, and subjective listening test demonstrate the superiority of the proposed method compared with the reference methods.

2013 ◽  
Vol 419 ◽  
pp. 517-520 ◽  
Author(s):  
Song Ying ◽  
Lei Wang ◽  
Wen Yuan Zhao

The solid-state nanopore sensor offers a versatile platform for the rapid, label-free electrical detection and analysis of single molecules, especially on DNA sequencing. However, the overall signal-to-noise ratio (SNA) is a major challenge in sequencing applications. In our work, two different fluid systems made by metal and plexiglass have been designed to improve the signal to noise ratio of the solid-state nanopore sensor. From the measurements on the noise power spectra with a variety of conditions, it is found that plexiglass fluid system coupled with shielding box produces a good quality of electric signals on nanopore sensors.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. O1-O7 ◽  
Author(s):  
Wen-kai Lu ◽  
Chang-Kai Zhang

The instantaneous phase estimated by the Hilbert transform (HT) is susceptible to noise; we propose a robust approach for the estimation of instantaneous phase in noisy situations. The main procedure of the proposed method is applying an adaptive filter in time-frequency domain and calculating the analytic signal. By supposing that one frequency component with higher amplitude has higher signal-to-noise ratio, a zero-phase adaptive filter, which is constructed by using the time-frequency amplitude spectrum, enhances the frequency components with higher amplitudes and suppresses those with lower amplitudes. The estimation of instantaneous frequency, which is defined as the derivative of instantaneous phase, is also improved by the proposed robust instantaneous phase estimation method. Synthetic and field data sets are used to demonstrate the performance of the proposed method for the estimation of instantaneous phase and frequency, compared by the HT and short-time-Fourier-transform methods.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kai Schmitz

Abstract Gravitational waves (GWs) from strong first-order phase transitions (SFOPTs) in the early Universe are a prime target for upcoming GW experiments. In this paper, I construct novel peak-integrated sensitivity curves (PISCs) for these experiments, which faithfully represent their projected sensitivities to the GW signal from a cosmological SFOPT by explicitly taking into account the expected shape of the signal. Designed to be a handy tool for phenomenologists and model builders, PISCs allow for a quick and systematic comparison of theoretical predictions with experimental sensitivities, as I illustrate by a large range of examples. PISCs also offer several advantages over the conventional power-law-integrated sensitivity curves (PLISCs); in particular, they directly encode information on the expected signal-to-noise ratio for the GW signal from a SFOPT. I provide semianalytical fit functions for the exact numerical PISCs of LISA, DECIGO, and BBO. In an appendix, I moreover present a detailed review of the strain noise power spectra of a large number of GW experiments. The numerical results for all PISCs, PLISCs, and strain noise power spectra presented in this paper can be downloaded from the Zenodo online repository [1]. In a companion paper [2], the concept of PISCs is used to perform an in-depth study of the GW signal from the cosmological phase transition in the real-scalar-singlet extension of the standard model. The PISCs presented in this paper will need to be updated whenever new theoretical results on the expected shape of the signal become available. The PISC approach is therefore suited to be used as a bookkeeping tool to keep track of the theoretical progress in the field.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yu-E Song ◽  
Xiao-Yan Zhang ◽  
Chun-Heng Shang ◽  
Hong-Xia Bu ◽  
Xiao-Yan Wang

The Wigner-Ville distribution (WVD) based on the linear canonical transform (LCT) (WDL) not only has the advantages of the LCT but also has the good properties of WVD. In this paper, some new and important properties of the WDL are derived, and the relationships between WDL and some other time-frequency distributions are discussed, such as the ambiguity function based on LCT (LCTAF), the short-time Fourier transform (STFT), and the wavelet transform (WT). The WDLs of some signals are also deduced. A novel definition of the WVD based on the LCT and generalized instantaneous autocorrelation function (GWDL) is proposed and its applications in the estimation of parameters for QFM signals are also discussed. The GWDL of the QFM signal generates an impulse and the third-order phase coefficient of QFM signal can be estimated in accordance with the position information of such impulse. The proposed algorithm is fast because it only requires 1-dimensional maximization. Also the new algorithm only has fourth-order nonlinearity thus it has accurate estimation and low signal-to-noise ratio (SNR) threshold. The simulation results are provided to support the theoretical results.


2001 ◽  
Vol 10 (04) ◽  
pp. 477-500 ◽  
Author(s):  
D. BABUSCI ◽  
M. GIOVANNINI

The sensitivity achievable by a pair of VIRGO detectors to stochastic and isotropic gravitational wave backgrounds produced in pre-big-bang models is discussed in view of the development of a second VIRGO interferometer. We describe a semi-analytical technique allowing to compute the signal-to-noise ratio for (monotonic or non-monotonic) logarithmic energy spectra of relic gravitons of arbitrary slope. We apply our results to the case of two correlated and coaligned VIRGO detectors and we compute their achievable sensitivities. We perform our calculations both for the usual case of minimal string cosmological scenario and in the case of a non-minimal scenario (originally suggested by Gasperini) where a long dilaton dominated phase is present prior to the onset of the ordinary radiation dominated phase. In this framework, we investigate possible improvements of the achievable sensitivities by selective reduction of the thermal contributions (pendulum and pendulum's internal modes) to the noise power spectra of the detectors. Since a reduction of the shot noise does not increase significantly the expected sensitivity of a VIRGO pair (in spite of the relative spatial location of the two detectors) our findings support the experimental efforts directed towards a substantial reduction of thermal noise.


2021 ◽  
pp. 1-19
Author(s):  
Toshiyuki Yuhara ◽  
Tomokazu Numano

BACKGROUND: Digital radiography (DR) is grayscale adjustable and it can be unclear whether an acquired DR image is captured with the minimum radiation dose required. It is necessary to make an image of the amount of noise when taken at a lower dose than the acquired image, without increased exposure. OBJECTIVE: To examine whether an image of unacquired dose can be created from two types of dose DR images acquired using a phantom. METHODS: To create an additive image from two images of different doses, the pixel value of one image is multiplied by a coefficient and added to the other. The normalized noise power spectra (NNPS) of the normal image and the additive image with the same signal-to-noise ratio (SNR) are compared. The image noise of the unacquired doses is estimated from the graph changes of the pixel values and standard deviations of two images. The error between the SNR of the image obtained by changing the dose and the estimated SNR is measured. We propose a multiplication coefficient calculation formula that theoretically adjusts the additive image to the target SNR. The SNR error of the image created based on this formula is measured. RESULTS: The NNPS curves of the additive and normal images show a difference on the high frequency side. According to the statistics considering the preset of mAs value, there is no significant difference at 85%. The SNR estimation error is approximately 1%. The SNR error of the additive image created based on the formula is approximately 5%. CONCLUSION: The noise of the image of unacquired dose can be estimated, and the additive image adjusted to this value can be considered equivalent to the image taken at the actual dose.


Author(s):  
Yuxuan Ke ◽  
Andong Li ◽  
Chengshi Zheng ◽  
Renhua Peng ◽  
Xiaodong Li

AbstractDeep learning-based speech enhancement algorithms have shown their powerful ability in removing both stationary and non-stationary noise components from noisy speech observations. But they often introduce artificial residual noise, especially when the training target does not contain the phase information, e.g., ideal ratio mask, or the clean speech magnitude and its variations. It is well-known that once the power of the residual noise components exceeds the noise masking threshold of the human auditory system, the perceptual speech quality may degrade. One intuitive way is to further suppress the residual noise components by a postprocessing scheme. However, the highly non-stationary nature of this kind of residual noise makes the noise power spectral density (PSD) estimation a challenging problem. To solve this problem, the paper proposes three strategies to estimate the noise PSD frame by frame, and then the residual noise can be removed effectively by applying a gain function based on the decision-directed approach. The objective measurement results show that the proposed postfiltering strategies outperform the conventional postfilter in terms of segmental signal-to-noise ratio (SNR) as well as speech quality improvement. Moreover, the AB subjective listening test shows that the preference percentages of the proposed strategies are over 60%.


Author(s):  
S-K Lee ◽  
S Banerjee ◽  
A Mal

The current paper presents a novel approach to precisely locate and characterize an impact load in thick plates. The approach is based on the analysis of the acoustic waveforms measured by a sensor array located on the plate surface in combination with the theoretical Green's function for the plate. The Green's functions are derived based on either the exact elastodynamic theory or an approximate shear deformation plate theory. For accurate estimation of the location of the impact source, the time differences in the arrival times of the waves at the sensors and their propagation velocities are determined first. This is accomplished through the use of a combined higher-order time-frequency (CHOTF) method, which is capable of detecting signals with lower signal to noise ratio compared with other available methods. Since most of the energy in the wave is carried by the flexural waves ( A0 mode), the group velocity of this mode is extracted using the CHOTF technique for estimating the impact source location. The estimates are shown to be in excellent agreement with the actual locations and time histories of the applied impact loads.


Author(s):  
Fei Du ◽  
Jun Hong ◽  
Baotong Li ◽  
Zeng Luo ◽  
Shaofeng Wang ◽  
...  

Ultrasound method is an extremely useful tool in contact parameters identification for joint surface widely used in engineering product. Wiener filter is commonly used to ultrasonic reflection map to reduce the influences of the blurring effect introduced by ultrasonic beam size on the measurement accuracy, but the results are not good enough because it is difficult to estimate the signal-to-noise ratio of reflection map. In this paper, a noise evaluation based Wiener deconvolution approach is developed to handle this problem. The noise power spectrum of reflection map is estimated through the steel-air contact area of the joint surface, and an evaluation of the ratio of noise power spectrum and signal power spectrum is obtained based on the noise variance and the experimental reflection map. To verify the efficiency of the developed approach, a sphere-plate contact interface is selected as a concrete case in which different Wiener deconvolution approaches are applied for evaluation of contact parameters. The results are compared with simulation results produced by a finite element model (FEM). The comparisons show that the contact parameters obtained by the proposed approach are more accurate than that obtained by commonly used Wiener filter approaches.


Sign in / Sign up

Export Citation Format

Share Document