scholarly journals Bedforms in a turbulent stream: ripples, chevrons and antidunes

2011 ◽  
Vol 690 ◽  
pp. 94-128 ◽  
Author(s):  
Bruno Andreotti ◽  
Philippe Claudin ◽  
Olivier Devauchelle ◽  
Orencio Durán ◽  
Antoine Fourrière

AbstractThe interaction between a turbulent flow and a granular bed via sediment transport produces various bedforms associated with distinct hydrodynamical regimes. In this paper, we compare ripples (downstream-propagating transverse bedforms), chevrons and bars (bedforms inclined with respect to the flow direction) and antidunes (upstream-propagating bedforms), focusing on the mechanisms involved in the early stages of their formation. Performing the linear stability analysis of a flat bed, we study the asymptotic behaviours of the dispersion relation with respect to the physical parameters of the problem. In the subcritical regime (Froude number $\mathscr{F}$ smaller than unity), we show that the same instability produces ripples or chevrons depending on the influence of the free surface. The transition from transverse to inclined bedforms is controlled by the ratio of the saturation length ${L}_{\mathit{sat}} $, which encodes the stabilizing effect of sediment transport, to the flow depth $H$, which determines the hydrodynamical regime. These results suggest that alternate bars form in rivers during flooding events, when suspended load dominates over bedload. In the supercritical regime $\mathscr{F}\gt 1$, the transition from ripples to antidunes is also controlled by the ratio ${L}_{\mathit{sat}} / H$. Antidunes appear around resonant conditions for free surface waves, a situation for which the sediment transport saturation becomes destabilizing. This resonance turns out to be fundamentally different from the inviscid prediction. Their wavelength selected by linear instability mostly scales on the flow depth $H$, which is in agreement with existing experimental data. Our results also predict the emergence, at large Froude numbers, of ‘antichevrons’ or ‘antibars’, i.e. bedforms inclined with respect to the flow and propagating upstream.

2010 ◽  
Vol 649 ◽  
pp. 287-328 ◽  
Author(s):  
ANTOINE FOURRIÈRE ◽  
PHILIPPE CLAUDIN ◽  
BRUNO ANDREOTTI

It is widely accepted that both ripples and dunes form in rivers by primary linear instability; the wavelength of the former scaling on the grain size and that of the latter being controlled by the water depth. We revisit here this problem in a theoretical framework that allows to give a clear picture of the instability in terms of dynamical mechanisms. A multi-scale description of the problem is proposed, in which the details of the different mechanisms controlling sediment transport are encoded into three quantities: the saturated flux, the saturation length and the threshold shear stress. Hydrodynamics is linearized with respect to the bedform aspect ratio. We show that the phase shift of the basal shear stress with respect to the topography, responsible for the formation of bedforms, appears in an inner boundary layer where shear stress and pressure gradients balance. This phase shift is sensitive to the presence of the free surface, and the related effects can be interpreted in terms of standing gravity waves excited by topography. The basal shear stress is dominated by this finite depth effect in two ranges of wavelength: when the wavelength is large compared to the flow depth, so that the inner layer extends throughout the flow, and in the resonant conditions, when the downstream material velocity balances the upstream wave propagation. Performing the linear stability analysis of a flat sand bed, the relation between the wavelength at which ripples form and the flux saturation length is quantitatively derived. It explains the discrepancy between measured initial wavelengths and predictions that do not take this lag between flow velocity and sediment transport into account. Experimental data are used to determine the saturation length as a function of grain size and shear velocity. Taking the free surface into account, we show that the excitation of standing waves has a stabilizing effect, independent of the details of the flow and sediment transport models. Consequently, the shape of the dispersion relation obtained from the linear stability analysis of a flat sand bed is such that dunes cannot result from a primary linear instability. We present the results of field experiments performed in the natural sandy Leyre river, which show the formation of ripples by a linear instability and the formation of dunes by a nonlinear pattern coarsening limited by the free surface. Finally, we show that mega-dunes form when the sand bed presents heterogeneities such as a wide distribution of grain sizes.


1991 ◽  
Vol 22 (5) ◽  
pp. 327-340 ◽  
Author(s):  
K. Høgh Jensen ◽  
J. C. Refsgaard

A numerical analysis of solute transport in two spatially heterogeneous fields is carried out assuming that the fields are composed of ensembles of one-dimensional non-interacting soil columns, each column representing a possible soil profile in statistical terms. The basis for the analysis is the flow simulation described in Part II (Jensen and Refsgaard, this issue), which serves as input to a transport model based on the convection-dispersion equation. The simulations of the average and variation in solute concentration in planes perpendicular to the flow direction are compared to measurements obtained from tracer experiments carried out at the two fields. Due to the limited amount of measurement data, it is difficult to draw conclusive evidence of the simulations, but reliable simulations are obtained of the mean behaviour within the two fields. The concept of equivalent soil properties is also tested for the transport problem in heterogeneous soils. Based on effective parameters for the retention and hydraulic conductivity functions it is possible to predict the mean transport in the two experimental fields.


Author(s):  
Francisco de Melo Viríssimo ◽  
Paul A. Milewski

The problem of two layers of immiscible fluid, bordered above by an unbounded layer of passive fluid and below by a flat bed, is formulated and discussed. The resulting equations are given by a first-order, four-dimensional system of PDEs of mixed-type. The relevant physical parameters in the problem are presented and used to write the equations in a non-dimensional form. The conservation laws for the problem, which are known to be only six, are explicitly written and discussed in both non-Boussinesq and Boussinesq cases. Both dynamics and nonlinear stability of the Cauchy problem are discussed, with focus on the case where the upper unbounded passive layer has zero density, also called the free surface case. We prove that the stability of a solution depends only on two ‘baroclinic’ parameters (the shear and the difference of layer thickness, the former being the most important one) and give a precise criterion for the system to be well-posed. It is also numerically shown that the system is nonlinearly unstable, as hyperbolic initial data evolves into the elliptic region before the formation of shocks. We also discuss the use of simple waves as a tool to bound solutions and preventing a hyperbolic initial data to become elliptic and use this idea to give a mathematical proof for the nonlinear instability.


Lubricants ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 48
Author(s):  
Sufian Munawar

Shear stress at the cilia wall is considered as an imperative factor that affects the efficiency of cilia beatings as it describes the momentum transfer between the fluid and the cilia. We consider a visco-inelastic Prandtl fluid in a ciliated channel under electro-osmotic pumping and the slippage effect at cilia surface. Cilia beating is responsible for the stimulation of the flow in the channel. Evenly distributed cilia tend to move in a coordinated rhythm to mobilize propulsive metachronal waves along the channel surface by achieving elliptic trajectory movements in the flow direction. After using lubrication approximations, the governing equations are solved by the perturbation method. The pressure rise per metachronal wavelength is obtained by numerically integrating the expression. The effects of the physical parameters of interest on various flow quantities, such as velocity, pressure gradient, pressure rise, stream function, and shear stress at the ciliated wall, are discussed through graphs. The analysis reveals that the axial velocity is enhanced by escalating the Helmholtz–Smoluchowski velocity and the electro-osmosis effects near the elastic wall. The shear stress at the ciliated boundary elevates with an increase in the cilia length and the eccentricity of the cilia structure.


2018 ◽  
Vol 35 (1) ◽  
pp. 15-23
Author(s):  
Zi-Yu Guo ◽  
Xiao-Peng Chen ◽  
Lai-Bing Jia ◽  
Bin Xu

2009 ◽  
Vol 625 ◽  
pp. 435-443 ◽  
Author(s):  
MARK A. KELMANSON

A novel pseudo-three-timescale asymptotic procedure is developed and implemented for obtaining accurate approximations to solutions of an evolution equation arising in thin-film free-surface viscous flow. The new procedure, which employs strained fast and slow timescales, requires considerably fewer calculations than its standard three-timescale counterpart employing fast, slow and slower timescales and may readily be applied to other evolution equations of fluid mechanics possessing wave-like solutions exhibiting exponential decay in amplitude and variations in phase over disparate timescales. The new method is validated on the evolution of free-surface waves on a thin, viscous film coating the exterior of a horizontal rotating cylinder and is shown to yield accurate solutions up to non-dimensional times exceeding by an order of magnitude those of previous related studies. Results of the new method applied to this test problem are demonstrated to be in excellent agreement, over large timescales, with those of corroborative spectrally accurate numerical integrations.


1979 ◽  
Vol 93 (3) ◽  
pp. 433-448 ◽  
Author(s):  
Judith Y. Holyer

This paper contains a study of large amplitude, progressive interfacial waves moving between two infinite fluids of different densities. The highest wave has been calculated using the criterion that it has zero horizontal fluid velocity at the interface in a frame moving at the phase speed of the waves. For free surface waves this criterion is identical to the criterion due to Stokes, namely that there is a stagnation point at the crest of each wave. I t is found that as the density of the upper fluid increases relative to the density of the lower fluid the maximum height of the wave, for fixed wavelength, increases. The maximum height of a Boussinesq wave, which has the density almost the same above and below the interface, is 2·5 times the maximum height of a surface wave of the same wavelength. A wave with air over the top of it can be about 2% higher than the highest free surface wave. The point at which the limiting criterion is first satisfied moves from the crest for free surface waves to the point half-way between the crest and the trough for Boussinesq waves. The phase speed, momentum, energy and other wave properties are calculated for waves up to the highest using Padé approximants. For free surface waves and waves with air above the interface the maximum value of these properties occurs for waves which are lower than the highest. For Boussinesq waves and waves with the density of the upper fluid onetenth of the density of the lower fluid these properties each increase monotonically with the wave height.


Sign in / Sign up

Export Citation Format

Share Document