The effect of angular misalignment on low-frequency axisymmetric wake instability

2017 ◽  
Vol 813 ◽  
Author(s):  
V. Gentile ◽  
B. W. van Oudheusden ◽  
F. F. J. Schrijer ◽  
F. Scarano

The effect of angular misalignment on the low-frequency dynamics of the near wake of a blunt-based axisymmetric body is investigated at a Reynolds number of $Re=67\,000$. While for axisymmetric boundary conditions all azimuthal orientations of the wake are explored with equal probability, resulting in a statistical axisymmetry, an angular offset as small as $0.2^{\circ }$ is found to suppress the low-frequency large-scale behaviour that is associated with the erratic meandering of the region of reversed flow. As a result of the misalignment, the centroid of this backflow region is displaced from the model axis and remains confined around an average off-centre position. Spectral and modal analysis provides evidence that the erratic backflow behaviour occurs within a narrow angular range of deviations from axisymmetric conditions.

2020 ◽  
Vol 8 (5) ◽  
pp. 365
Author(s):  
Li Zou ◽  
Kun Wang ◽  
Yichen Jiang ◽  
Aimin Wang ◽  
Tiezhi Sun

Owing to the rapid development of the offshore wind power technology and increasing capacity of wind turbines, vertical-axis wind turbines (VAWTs) have experienced a great development. Nevertheless, the VAWT wake effect, which affects the power generation efficiency and rotor fatigue life, has not been thoroughly understood. In this study, the mid-span wake measurements on a VAWT in six different configurations were conducted. This study aimed to investigate the effect of solidity on near wake instability of vertical-axis wind turbine. By using the wavelet analysis method to analyse the measured velocity (or pressure) time series signals on a multi-scale and with multi-resolution, the dynamic characteristics of the coherent vortex structures in the wake evolution process were determined. The results show that with increasing solidity, the VAWT wake develops into a bluff body wake mode. In addition, a characteristic frequency that is lower than the low-frequency large-scale vortex shedding frequency occur. The wavelet transform was used to decompose and reconstruct the measured data, and the relationship between the low-frequency large-scale vortex shedding and lower frequency pulsation was established. The results provide important data for numerical modelling and new insights into the physical mechanism of the VAWT wake evolution into a bluff body wake.


Author(s):  
Jonathan F Morrison

The nature of the interaction between the inner and outer regions of turbulent wall-bounded flow is examined. Townsend's theory of inactive motion is shown to be a first-order, linear approximation of the effect of the large eddies at the surface that acts as a quasi-inviscid, low-frequency modulation of the shear-stress-bearing motion. This is shown to be a ‘strong’ asymptotic condition that directly expresses the decoupling of the inner-scale active motion from the outer-scale inactive motion. It is further shown that such a decoupling of the inner and outer vorticity fields near the wall is inappropriate, even at high Reynolds numbers, and that a ‘weak’ asymptotic condition is required to represent the increasing effect of outer-scale influences as the Reynolds number increases. High Reynolds number data from a fully developed pipe flow and the atmospheric surface layer are used to show that the large-scale motion penetrates to the wall, the inner–outer interaction is not describable as a linear process and the interaction should more generally be accepted as an intrinsically nonlinear one.


2008 ◽  
Vol 601 ◽  
pp. 425-441 ◽  
Author(s):  
MOSES KHOR ◽  
JOHN SHERIDAN ◽  
MARK C. THOMPSON ◽  
KERRY HOURIGAN

Observations have been made of the time-mean velocity profile at midspan in the near-wake of circular cylinders at moderate Reynolds numbers between 600 and 4600, well beyond the Reynolds number of approximately 200 at which the wake becomes three-dimensional. The measured profiles are found to be represented quite accurately by a family of function profiles with known linear instability characteristics. The complex instability frequency is then determined as a function of wake position, using the function profiles. In general, the near wake undergoes a transition from convective to absolute instability; the distance downstream to the point of transition is found to increase over the Reynolds number range investigated. The emergence of a significant region of convective instability is consistent with the known appearance of Bloor–Gerrard vortices. The selected frequency of the wake instability is determined by the saddle-point criterion; the Strouhal numbers for Bénard–von Kármán vortex shedding are found to compare well with the values in the literature.


Author(s):  
M. W. Yiu ◽  
H. Li ◽  
Y. Zhou

When Reynolds number, Re (≡U∞d/v, where U∞ is the free stream velocity, d is the cylinder diameter and v is the kinematic viscosity of the fluid), is in the range of 103 to 104, there is a large variation in the near-wake formation region in terms of the base pressure coefficient, the fluctuating lift coefficient, the vortex formation length, which have previously been connected to the generation of small-scale Kelvin-Helmholtz vortices. This work aims to investigate how this Re variation affects the three components of vorticity in terms of time-averaged and small-scale structures and also to provide a relatively complete set of 3-D vorticity data. All three components of vorticity data were simultaneously measured in the intermediate region of the turbulent wake using a multi-wire vorticity probe. It is observed that the root-mean-square (rms) values of the three vorticity components increase with Re, especially the streamwise component, which shows a large jump from Re = 5×103 to 104. At the central frequencies of f0 and 2f0, the contributions from the large-scale and intermediate-scale structures of ωzi2/(ωz2)max decreases 13% and 16% respectively as the Re. increases. However, at the central frequency of 16f0, the contribution of the small-scale structure of ωzi2/(ωz2)max dramatic suddenly 7% increase at Re = 5×103 to 104. The result suggest the generation of small-scale Kelvin-Helmholtz vortices in the spanwise structure. The effect of Re on vorticity signals, spectra, contributions from the wavelet components to the vorticity variances are also examined.


2011 ◽  
Vol 690 ◽  
pp. 536-570 ◽  
Author(s):  
Christopher K. W. Tam ◽  
Hongbin Ju

AbstractIt is known experimentally that an aerofoil immersed in a uniform stream at a moderate Reynolds number emits tones. However, there have been major differences in the experimental observations in the past. Some experiments reported the observation of multiple tones, with strong evidence that these tones are most probably generated by a feedback loop. There is also an experiment reporting the observation of a single tone with no tonal jump or other features associated with feedback. In spite of the obvious differences in the experimental observations published in the literature, it is noted that all the dominant tone frequencies measured in all the investigations are in agreement with an empirically derived Paterson formula. The objective of the present study is to perform a direct numerical simulation (DNS) of the flow and acoustic phenomenon to investigate the tone generation mechanism. When comparing with experimental studies, numerical simulations appear to have two important advantages. The first is that there is no background wind tunnel noise in numerical simulation. This avoids the signal-to-noise ratio problem inherent in wind tunnel experiments. In other words, it is possible to study tones emitted by a truly isolated aerofoil computationally. The second advantage is that DNS produces a full set of space–time data, which can be very useful in determining the tone generation processes. The present effort concentrates on the tones emitted by three NACA0012 aerofoils with a slightly rounded trailing edge but with different trailing edge thickness at zero degree angle of attack. At zero degree angle of attack, in the Reynolds number range of$2\ensuremath{\times} 1{0}^{5} $to$5\ensuremath{\times} 1{0}^{5} $, the boundary layer flow is attached nearly all the way to the trailing edge of the aerofoil. Unlike an aerofoil at an angle of attack, there is no separation bubble, no open flow separation. All the flow separation features tend to increase the complexity of the tone generation processes. The present goal is limited to finding the basic tone generation mechanism in the simplest flow configuration. Our DNS results show that, for the flow configuration under study, the aerofoil emits only a single tone. This is true for all three aerofoils over the entire Reynolds number range of the present study. In the literature, it is known that Kelvin–Helmholtz instabilities of free shear layers generally have a much higher spatial growth rate than that of the Tollmien–Schlichting boundary layer instabilities. A near-wake non-parallel flow instability analysis is performed. It is found that the tone frequencies are the same as the most amplified Kelvin–Helmholtz instability at the location where the wake has a minimum half-width. This suggests that near-wake instability is the energy source of aerofoil tones. However, flow instabilities at low subsonic Mach numbers generally do not cause strong tones. An investigation of how near-wake instability generates tones is carried out using the space–time data provided by numerical simulations. Our observations indicate that the dominant tone generation process is the interaction of the oscillatory motion of the near wake, driven by flow instability, with the trailing edge of the aerofoil. Secondary mechanisms involving unsteady near-wake motion and the formation of discrete vortices in regions further downstream are also observed.


2010 ◽  
Vol 659 ◽  
pp. 365-374 ◽  
Author(s):  
GEORGE K. EL KHOURY ◽  
HELGE I. ANDERSSON ◽  
BJØRNAR PETTERSEN

The flow field around a 6:1 prolate spheroid has been investigated by means of direct numerical simulations. Contrary to earlier studies the major axis of the spheroid was oriented perpendicular to the oncoming flow. At the subcritical Reynolds number 10 000 the laminar boundary layer separated from the frontal side of the spheroid and formed an elliptical vortex sheet. The detached shear layer was unstable from its very inception and even the near-wake turned out to be turbulent. The Strouhal number associated with the large-scale shedding was 0.156, significantly below that of the wake of a sphere. A higher-frequency mode was associated with Kelvin–Helmholtz instabilities in the detached shear layer. The shape of the near-wake mirrored the shape of the spheroid. Some 10 minor diameters downstream, the major axis of the wake became aligned with the minor axis of the spheroid.


1988 ◽  
Vol 190 ◽  
pp. 513-529 ◽  
Author(s):  
M. F. Unal ◽  
D. Rockwell

Control of vortex formation from a circular cylinder by a long plate in its wake is examined over the Reynolds number range 140 < Re < 3600. There are two basic flow regimes: a pre-vortex formation regime, in which the plate precludes formation of a large-scale vortex upstream of the tip of the plate; and a post-vortex formation regime in which one or more large-scale vortices are formed upstream of the edge. The unsteady pressure loading at the tip of the plate increases by over an order of magnitude during transition from the pre- to post-vortex formation regime. If the plate is located near the cylinder, it is possible to more than double the vortex formation length, relative to the case of the free wake. Moreover, these observations suggest that: there is a minimum streamwise lengthscale for development of the absolute instability of the near wake and thereby the large-scale vortex; and the vortex formation length may also be influenced by the downstream vorticity dynamics. When the plate is located downstream of the initially formed vortex, effective control is possible when the near-wake fluctuation level and mean base pressure of the corresponding free (non-impinging) wake are sufficiently small. This occurs in the low and moderate subcritical regimes; the substantial control by the wake-plate interaction in this range of Reynolds number implies low strength of the absolute instability of the near wake. However, in the pure von Kármán regime, selfcontrol of the near wake dominates that imposed by the wake-edge interaction, suggesting a strong absolute instability of the near wake.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document