Wave boundary layers in a stratified fluid

2017 ◽  
Vol 833 ◽  
pp. 512-537 ◽  
Author(s):  
G. M. Reznik

We study so-called wave boundary layers (BLs) arising in a stably stratified fluid at large times. The BL is a narrow domain near the surface and/or bottom of the fluid; with increasing time, gradients of buoyancy and horizontal velocity in the BL grow sharply and the BL thickness tends to zero. The non-stationary BL can arise both as a result of linear evolution of the initial perturbation and under the action of an external force (tangential stress exerted on the fluid surface in our case). We analyse both the variants and find that the ‘forced’ BLs are much more intense than the ‘free’ ones. In the ‘free’ BLs all fields are bounded and the gradients of buoyancy and horizontal velocity grow linearly in time, whereas in the ‘forced’ BL only the vertical velocity is bounded and the buoyancy and horizontal velocity grow linearly in time. As to the gradients in the ‘forced’ BL, the vertical velocity gradient grows in time linearly and the gradients of buoyancy and horizontal velocity grow quadratically. In both of the cases we determine exact solutions in the form of expansions in the vertical wave modes and find asymptotic solutions valid at large times. The comparison between them shows that the asymptotic solutions approximate the exact ones fairly well even for moderate times.

2019 ◽  
Vol 59 (2) ◽  
pp. 201-207
Author(s):  
G. M. Reznik

The theory of wave boundary layers developed in [7], is generalized to the case of stably-neutrally stratified ocean consisting of upper homogeneous and lower stratified layers. In this configuration, in addition to the boundary layers near the ocean bottom and/or surface, a wave boundary layer develops near the interface between the layers in the lower stratified part of basin. Each the boundary layer is a narrow domain characterized by sharp, growing in time, vertical gradients of buoyancy and horizontal velocity. As in [7], the near interface boundary layer arises as a result of free linear evolution of rather general initial fields. An asymptotic solution describing the long-term evolution is presented and compared to exact solution; the asymptotic solution approximates the exact one fairly well even on not very large times.


1999 ◽  
Vol 45 (151) ◽  
pp. 533-538 ◽  
Author(s):  
Niels Reeh ◽  
Søren Nørvang Madsen ◽  
Johan Jakob Mohr

AbstractUntil now, an assumption of surface-parallel glacier flow has been used to express the vertical velocity component in terms of the horizontal velocity vector, permitting all three velocity components to be determined from synthetic aperture radar interferometry. We discuss this assumption, which neglects the influence of the local mass balance and a possible contribution to the vertical velocity arising if the glacier is not in steady state. We find that the mass-balance contribution to the vertical surface velocity is not always negligible as compared to the surface-slope contribution. Moreover, the vertical velocity contribution arising if the ice sheet is not in steady state can be significant. We apply the principle of mass conservation to derive an equation relating the vertical surface velocity to the horizontal velocity vector. This equation, valid for both steady-state and non-steady-state conditions, depends on the ice-thickness distribution. Replacing the surface-parallel-flow assumption with a correct relationship between the surface velocity components requires knowledge of additional quantities such as surface mass balance or ice thickness.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Author(s):  
W. D. McKee

AbstractWaves in a rotating, stratified fluid of variable depth are considered. The perturbation pressure is used throughout as the dependent variable. This proves to have some advantages over the use of the vertical velocity. Some previous three-dimensional solutions for internal waves in a wedge are shown to be incorrect and the correct solutions presented. A WKB analysis is then performed for the general problem and the results compared with the exact solutions for a wedge. The WKB solution is also applied to long surface waves on a rotating ocean.


2018 ◽  
Vol 856 ◽  
pp. 135-168 ◽  
Author(s):  
S. T. Salesky ◽  
W. Anderson

A number of recent studies have demonstrated the existence of so-called large- and very-large-scale motions (LSM, VLSM) that occur in the logarithmic region of inertia-dominated wall-bounded turbulent flows. These regions exhibit significant streamwise coherence, and have been shown to modulate the amplitude and frequency of small-scale inner-layer fluctuations in smooth-wall turbulent boundary layers. In contrast, the extent to which analogous modulation occurs in inertia-dominated flows subjected to convective thermal stratification (low Richardson number) and Coriolis forcing (low Rossby number), has not been considered. And yet, these parameter values encompass a wide range of important environmental flows. In this article, we present evidence of amplitude modulation (AM) phenomena in the unstably stratified (i.e. convective) atmospheric boundary layer, and link changes in AM to changes in the topology of coherent structures with increasing instability. We perform a suite of large eddy simulations spanning weakly ($-z_{i}/L=3.1$) to highly convective ($-z_{i}/L=1082$) conditions (where$-z_{i}/L$is the bulk stability parameter formed from the boundary-layer depth$z_{i}$and the Obukhov length $L$) to investigate how AM is affected by buoyancy. Results demonstrate that as unstable stratification increases, the inclination angle of surface layer structures (as determined from the two-point correlation of streamwise velocity) increases from$\unicode[STIX]{x1D6FE}\approx 15^{\circ }$for weakly convective conditions to nearly vertical for highly convective conditions. As$-z_{i}/L$increases, LSMs in the streamwise velocity field transition from long, linear updrafts (or horizontal convective rolls) to open cellular patterns, analogous to turbulent Rayleigh–Bénard convection. These changes in the instantaneous velocity field are accompanied by a shift in the outer peak in the streamwise and vertical velocity spectra to smaller dimensionless wavelengths until the energy is concentrated at a single peak. The decoupling procedure proposed by Mathiset al.(J. Fluid Mech., vol. 628, 2009a, pp. 311–337) is used to investigate the extent to which amplitude modulation of small-scale turbulence occurs due to large-scale streamwise and vertical velocity fluctuations. As the spatial attributes of flow structures change from streamwise to vertically dominated, modulation by the large-scale streamwise velocity decreases monotonically. However, the modulating influence of the large-scale vertical velocity remains significant across the stability range considered. We report, finally, that amplitude modulation correlations are insensitive to the computational mesh resolution for flows forced by shear, buoyancy and Coriolis accelerations.


Sign in / Sign up

Export Citation Format

Share Document