Turbulent planar wakes under pressure gradient conditions

2017 ◽  
Vol 830 ◽  
Author(s):  
Sina Shamsoddin ◽  
Fernando Porté-Agel

Accurate prediction of the spatial evolution of turbulent wake flows under pressure gradient conditions is required in some engineering applications such as the design of high-lift devices and wind farms over topography. In this paper, we aim to develop an analytical model to predict the evolution of a turbulent planar wake under an arbitrary pressure gradient condition. The model is based on the cross-stream integration of the streamwise momentum equation and uses the self-similarity of the mean flow. We have also made an experimentally supported assumption that the ratio of the maximum velocity deficit to the wake width is independent of the imposed pressure gradient. The asymptotic response of the wake to the pressure gradient is also investigated. After its derivation, the model is successfully validated against experimental data by comparing the evolution of the wake width and maximum velocity deficit. The inputs of the model are the imposed pressure gradient and the wake width under zero pressure gradient. The model does not require any parameter tuning and is deemed to be practical, computationally fast, accurate enough, and therefore useful for the scientific and engineering communities.

2018 ◽  
Vol 837 ◽  
Author(s):  
Sina Shamsoddin ◽  
Fernando Porté-Agel

Turbulent axisymmetric wakes under pressure gradient have received little attention in the literature, in spite of their fundamental and practical importance, for example, in the case of wind turbine wakes over topography. In this paper, we develop an analytical framework to analyse turbulent axisymmetric wakes under different pressure gradient conditions. Specifically, we develop a model to predict how an arbitrary imposed pressure gradient perturbs the evolution of the zero-pressure-gradient wake. The starting point of the model is the basic mean conservation of the streamwise momentum equation. We take advantage of the self-similarity of the wake velocity deficit and the assumption that the ratio of the maximum velocity deficit to the wake width is independent of the pressure gradient; such an assumption is supported experimentally for planar wakes, and numerically for axisymmetric wakes in this study. Furthermore, an asymptotic solution for the problem is also derived. The problem is considered for both an axisymmetric strain and a planar strain. The inputs to the model are the imposed pressure gradient and the wake width in the zero-pressure-gradient case. To validate the model results, a set of large-eddy simulations (LES) are performed. Comparing the evolution of the maximum velocity deficit and the wake width, the model results and the LES data show good agreement. Similarly to planar wakes, it is observed that the axisymmetric wake recovers faster in the favourable pressure gradient compared with the adverse one.


1973 ◽  
Vol 61 (1) ◽  
pp. 33-63 ◽  
Author(s):  
H. P. A. H. Irwin

Measurements of a wall jet in a self-preserving pressure gradient are described. The quantities measured with a linearized hot-wire anemometer were the mean velocity, the turbulence stresses, triple and quadruple velocity correlations, intermittency and spectra of the longitudinal turbulence intensity. The turbulence, as well as the mean flow, reached a self-preserving state in which the ratio of the maximum velocity to the free-stream velocity was 2·65. Skin friction was also measured using the razor-blade technique in the viscous sublayer and buffer region. The values of the constants in the logarithmic law of the wall are found to be similar to those in boundary-layer and pipe flows. The skin-friction coefficient is slightly lower than that found for the wall jet in still air (Guitton 1970), but close to the formula of Bradshaw & Gee (1962) for the wall jet in an external stream with zero pressure gradient.A balance of the terms in the turbulence energy equation is presented and discussed. The shearing stress is not zero at the point of maximum velocity but is of opposite sign to that at the wall and hence the contribution of this stress to turbulence production is negative in the outer part of the boundary-layer region. However, the total turbulence production remains positive because the contribution of the normal stresses is positive and slightly larger. The pressure—velocity gradient correlations are evaluated by difference from the Reynolds stress equations and are compared with the theoretical model of Hanjalić & Launder (1972b). Agreement is quite good in the outer region of the wall jet. The above model is also compared with the triple velocity correlations and again found to be in fair agreement.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2018 ◽  
Vol 40 ◽  
pp. 05039
Author(s):  
Priscilla Williams ◽  
Vesselina Roussinova ◽  
Ram Balachandar

This paper focuses on the turbulence structure in a non-uniform, gradually varied, sub-critical open channel flow (OCF) on a rough bed. The flow field is analysed under accelerating, near-uniform and decelerating conditions. Information for the flow and turbulence parameters was obtained at multiple sections and planes using two different techniques: two-component laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Different outer region velocity scaling methods were explored for evaluation of the local friction velocity. Analysis of the mean velocity profiles showed that the overlap layer exists for all flow cases. The outer layer of the decelerated velocity profile was strongly affected by the pressure gradient, where a large wake was noted. Due to the prevailing nature of the experimental setup it was found that the time-averaged flow quantities do not attained equilibrium conditions and the flow is spatially heterogeneous. The roughness generally increases the friction velocity and its effect was stronger than the effect of the pressure gradient. It was found that for the decelerated flow section over a rough bed, the mean flow and turbulence intensities were affected throughout the flow depth. The flow features presented in this study can be used to develop a model for simulating flow over a block ramp. The effect of the non-uniformity and roughness on turbulence intensities and Reynolds shear stresses was further investigated.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 118 ◽  
Author(s):  
Hossein Hamidifar ◽  
Alireza Keshavarzi ◽  
Paweł M. Rowiński

Trees have been used extensively by river managers for improving the river environment and ecology. The link between flow hydraulics, bed topography, habitat availability, and organic matters is influenced by vegetation. In this study, the effect of trees on the mean flow, bed topography, and bed shear stress were tested under different flow conditions. It was found that each configuration of trees produced particular flow characteristics and bed topography patterns. The SR (single row of trees) model appeared to deflect the maximum velocity downstream of the bend apex toward the inner bank, while leading the velocity to be more uniformly distributed throughout the bend. The entrainment of sediment particles occurred toward the area with higher values of turbulent kinetic energy (TKE). The results showed that both SR and DR (double rows of trees) models are effective in relieving bed erosion in sharp ingoing bends. The volume of the scoured bed was reduced up to 70.4% for tests with trees. This study shows the effectiveness of the SR model in reducing the maximum erosion depth.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1341
Author(s):  
Irene Daprà ◽  
Giambattista Scarpi

The purpose of this work is to study the motion of a non-Newtonian fluid in a rock fracture, generated by a constant pressure gradient to which a pulsating component is superposed. The momentum equation is faced analytically by adopting a logarithmic constitutive law; the velocity is expressed as a power series of the amplitude of the pulsating component, up to the second order, easily usable for numerical calculations. The results obtained are compared with those provided in the past by the authors, using a three-parameter Williamson model. The comparison highlights that the value of the mean flow rate in a period differs by less than 10% even if the velocity profiles look quite different.


1994 ◽  
Vol 279 ◽  
pp. 177-195 ◽  
Author(s):  
Alden M. Provost ◽  
W. H. Schwarz

Intuition and previous results suggest that a peristaltic wave tends to drive the mean flow in the direction of wave propagation. New theoretical results indicate that, when the viscosity of the transported fluid is shear-dependent, the direction of mean flow can oppose the direction of wave propagation even in the presence of a zero or favourable mean pressure gradient. The theory is based on an analysis of lubrication-type flow through an infinitely long, axisymmetric tube subjected to a periodic train of transverse waves. Sample calculations for a shear-thinning fluid illustrate that, for a given waveform, the sense of the mean flow can depend on the rheology of the fluid, and that the mean flow rate need not increase monotonically with wave speed and occlusion. We also show that, in the absence of a mean pressure gradient, positive mean flow is assured only for Newtonian fluids; any deviation from Newtonian behaviour allows one to find at least one non-trivial waveform for which the mean flow rate is zero or negative. Introduction of a class of waves dominated by long, straight sections facilitates the proof of this result and provides a simple tool for understanding viscous effects in peristaltic pumping.


Sign in / Sign up

Export Citation Format

Share Document