A note on analytic solutions for entraining stratified gravity currents

2017 ◽  
Vol 836 ◽  
pp. 260-276
Author(s):  
Marcus C. Horsley ◽  
Andrew W. Woods

High-Reynolds-number steady currents of relatively dense fluid propagating along a horizontal boundary become unstable and mix with the overlying fluid if the gradient Richardson number across the interface is less than 1/4. The process of entrainment produces a deepening mixing layer at the interface, which increases the gradient Richardson number of this layer and eventually may suppress further entrainment. The conservation of the vertically averaged buoyancy and momentum flux, as the current advances along the boundary, leads to two integral constraints relating the downstream flow with that upstream of the mixing zone. These constraints are equivalent to imposing a Froude number in the upstream flow. Using the ansatz that the dowstream velocity and buoyancy profiles in the current have a lower well-mixed region overlain by an interfacial layer of constant gradient, we can use these two constraints to quantify the total entrainment of ambient fluid into the flow as a function of the gradient Richardson number of the downstream flow. This leads to recognition that both subcritical and supercritical currents may develop downstream of the mixing zone. However, as the mixing increases and the interfacial layer gradually deepens, there is a critical point at which these two solution branches coincide. For each upstream Froude number, we can also determine the downstream flow with maximal entrainment. This maximal entrainment solution coincides with the convergence point of the supercritical and subcritical branches. We compare this with the entrainment predicted for those solutions with a gradient Richardson number of 1/4, which corresponds to the marginally stable case. As the upstream Froude number $Fr_{u}$ increases, the maximum depth of the interfacial mixing layer gradually increases until eventually, for $Fr_{u}>2.921$, the whole current may become modified through entrainment. We discuss the relevance of these results for mixing in gravity-driven flows.

1999 ◽  
Author(s):  
Namhyo Kim ◽  
David L. Rhode

Abstract A streamline curvature law of the wall is analytically derived to include very strong curved-channel wall curvature effects through a novel perturbation analysis. The new law allows improved analysis of such flows, and it provides the basis for improved wall function boundary conditions for their computation (CFD) over a wider range of y+, even for very strong curvature cases. The unique derivation is based on the Boussinesq eddy viscosity and curvature-corrected mixing length concepts, which is a linear function of the gradient Richardson number. For the first time, to include more complete curved flow physics, local streamline curvature effects in the gradient Richardson number are kept. To overcome the mathematical difficulty of keeping all of these local streamline curvature terms, a novel perturbation solution approach is successfully developed. This novel perturbation technique allows a closed-form analytical solution to many similar non-linear problems which previously required more complicated techniques. Qualitative and quantitative comparisons with measurements and previous curvature laws of the wall obtained by different approaches reveal that the new law shows improved representation of the wall curvature effects for all of the four test cases.


2021 ◽  
pp. 079
Author(s):  
Ivan Bašták Ďurán ◽  
Pascal Marquet

Le schéma de turbulence Toucans est utilisé dans la configuration opérationnelle Alaro du modèle Aladin depuis début 2015. Son développement a été initié, guidé et en grande partie conçu par Jean-François Geleyn. Ce développement a commencé avec le prédécesseur du schéma Toucans, le schéma « pseudo-pronostique » en énergie cinétique turbulente, lui-même basé sur l'ancien schéma de turbulence de Louis, mais étendu dans Toucans à un schéma pronostique. Le schéma Toucans a pour objectif de traiter de manière cohérente les fonctions qui dépendent de la stabilité verticale de l'atmosphère, de l'influence de l'humidité et des échelles de longueur de la turbulence (de mélange et de dissipation). De plus, de nouvelles caractéristiques ont été ajoutées : une représentation améliorée pour les stratifications très stables (absence de nombre de Richardson critique), une meilleure représentation de l'anisotropie, un paramétrage unifié de la turbulence et des nuages par l'ajout d'une deuxième énergie turbulente pronostique et la paramétrisation des moments du troisième ordre. The Toucans turbulence scheme is a turbulence scheme that is used in the operational Alaro configuration of the Aladin model since early 2015. Its development was initiated, guided and to a large extend authored by Jean-François Geleyn. The development started with the predecessor of the Toucans scheme, the "pseudo-prognostic" turbulent kinetic energy scheme which itself was built on the "Louis" turbulence scheme, but extended to a prognostic scheme. The Toucans scheme aims for a consistent treatment of stability dependency functions, influence of moisture, and turbulence length scales. Additionally, new features were added to the turbulence scheme: improved representation of turbulence in very stable stratification (absence of critical gradient Richardson number), better representation of anisotropy, unified parameterization of turbulence and clouds via addition of second prognostic turbulence energy, and parameterization of third order moments.


2008 ◽  
Vol 65 (4) ◽  
pp. 1414-1427 ◽  
Author(s):  
Y. P. Meillier ◽  
R. G. Frehlich ◽  
R. M. Jones ◽  
B. B. Balsley

Abstract Constant altitude measurements of temperature and velocity in the residual layer of the nocturnal boundary layer, collected by the Cooperative Institute for Research in Environmental Sciences (CIRES) Tethered Lifting System (TLS), exhibit fluctuations identified by previous work (Fritts et al.) as the signature of ducted gravity waves. The concurrent high-resolution TLS turbulence measurements (temperature structure constant C2T and turbulent kinetic energy dissipation rate ɛ) reveal the presence of patches of enhanced turbulence activity that are roughly synchronized with the troughs of the temperature and velocity fluctuations. To investigate the potentially dominant role ducted gravity waves might play on the modulation of atmospheric stability and therefore, on turbulence, time series of the wave-modulated gradient Richardson number (Ri) and of the vertical gradient of potential temperature ∂θ/∂z(t) are computed numerically and compared to the TLS small-scale turbulence measurements. The results of this study agree with the predictions of previous theoretical studies (i.e., wave-generated fluctuations of temperature and velocity modulate the gradient Richardson number), resulting in periodic enhancements of turbulence at Ri minima. The patches of turbulence observed in the TLS dataset are subsequently identified as convective instabilities generated locally within the unstable phase of the wave.


1971 ◽  
Vol 48 (2) ◽  
pp. 405-415 ◽  
Author(s):  
S. A. Maslowe ◽  
R. E. Kelly

Stability curves are computed for both spatially and temporally growing disturbances in a stratified mixing layer between two uniform streams. The low Froude number limit, in which the effects of buoyancy predominate, and the high Froude number limit, in which the effects of density variation are manifested by the inertial terms of the vorticity equation, are considered as limiting cases. For the buoyant case, although the spatial growth rates can be predicted reasonably well by suitable use of the results for temporal growth, spatially growing disturbances appear to have high group velocities near the lower cutoff wave-number. For the inertial case, it is demonstrated that density variations can be destabilizing. More precisely, when the stream with the higher velocity has the lower density, both the wave-number range of unstable disturbances and the maximum spatial growth rate are increased relative to the case of homogeneous flow. Finally, it is shown how the growth rate of the most unstable wave in the inertial case diminishes as buoyancy becomes important.


1999 ◽  
Vol 30 (1) ◽  
pp. 47-63 ◽  
Author(s):  
I.P.D De Silva ◽  
A Brandt ◽  
L.J Montenegro ◽  
H.J.S Fernando

2011 ◽  
Vol 41 (1) ◽  
pp. 166-185 ◽  
Author(s):  
Malcolm E. Scully ◽  
W. Rocky Geyer ◽  
John H. Trowbridge

Abstract Field observations of turbulent kinetic energy (TKE), dissipation rate ɛ, and turbulent length scale demonstrate the impact of both density stratification and nonlocal turbulent production on turbulent momentum flux. The data were collected in a highly stratified salt wedge estuary using the Mobile Array for Sensing Turbulence (MAST). Estimates of the dominant length scale of turbulent motions obtained from the vertical velocity spectra provide field confirmation of the theoretical limitation imposed by either the distance to the boundary or the Ozmidov scale, whichever is smaller. Under boundary-limited conditions, anisotropy generally increases with increasing shear and decreased distance to the boundary. Under Ozmidov-limited conditions, anisotropy increases rapidly when the gradient Richardson number exceeds 0.25. Both boundary-limited and Ozmidov-limited conditions demonstrate significant deviations from a local production–dissipation balance that are largely consistent with simple scaling relationships for the vertical divergence in TKE flux. Both the impact of stratification and deviation from equilibrium turbulence observed in the data are largely consistent with commonly used turbulence closure models that employ “nonequilibrium” stability functions. The data compare most favorably with the nonequilibrium version of the L. H. Kantha and C. A. Clayson stability functions. Not only is this approach more consistent with the observed critical gradient Richardson number of 0.25, but it also accounts for the large deviations from equilibrium turbulence in a manner consistent with the observations.


2014 ◽  
Vol 758 ◽  
Author(s):  
A. K. Kaminski ◽  
C. P. Caulfield ◽  
J. R. Taylor

AbstractWe investigate numerically transient linear growth of three-dimensional perturbations in a stratified shear layer to determine which perturbations optimize the growth of the total kinetic and potential energy over a range of finite target time intervals. The stratified shear layer has an initial parallel hyperbolic tangent velocity distribution with Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}=U_0 h/\nu =1000$ and Prandtl number $\nu /\kappa =1$, where $\nu $ is the kinematic viscosity of the fluid and $\kappa $ is the diffusivity of the density. The initial stable buoyancy distribution has constant buoyancy frequency $N_0$, and we consider a range of flows with different bulk Richardson number ${\mathit{Ri}}_b=N_0^2h^2/U_0^2$, which also corresponds to the minimum gradient Richardson number ${\mathit{Ri}}_g(z)=N_0^2/(\mathrm{d}U/\mathrm{d} z)^2$ at the midpoint of the shear layer. For short target times, the optimal perturbations are inherently three-dimensional, while for sufficiently long target times and small ${\mathit{Ri}}_b$ the optimal perturbations are closely related to the normal-mode ‘Kelvin–Helmholtz’ (KH) instability, consistent with analogous calculations in an unstratified mixing layer recently reported by Arratia et al. (J. Fluid Mech., vol. 717, 2013, pp. 90–133). However, we demonstrate that non-trivial transient growth occurs even when the Richardson number is sufficiently high to stabilize all normal-mode instabilities, with the optimal perturbation exciting internal waves at some distance from the midpoint of the shear layer.


2017 ◽  
Vol 837 ◽  
pp. 293-319 ◽  
Author(s):  
B.-J. Gréa ◽  
A. Ebo Adou

Miscible fluids of different densities subjected to strong time-periodic accelerations normal to their interface can mix due to Faraday instability effects. Turbulent fluctuations generated by this mechanism lead to the emergence and the growth of a mixing layer. Its enlargement is gradually slowed down as the resonance conditions driving the instability cease to be fulfilled. The final state corresponds to a saturated mixing zone in which the turbulence intensity progressively decays. A new formalism based on second-order correlation spectra for the turbulent quantities is introduced for this problem. This method allows for the prediction of the final mixing zone size and extends results from classical stability analysis limited to weakly nonlinear regimes. We perform at various forcing frequencies and amplitudes a large set of homogeneous and inhomogeneous numerical simulations, extensively exploring the influence of initial conditions. The mixing zone widths, measured at the end of the simulations, are satisfactorily compared to the predictions, and bring a strong support to the proposed theory. The flow dynamics is also studied and reveals the presence of sub-harmonic as well as harmonic modes depending on the initial parameters in the Mathieu phase diagram. Important changes in the flow anisotropy, corresponding to the large scale structures of turbulence, occur. This phenomenon appears directly related to the orientation of the most amplified gravity waves excited in the system, evolving due to the enlargement of the mixing zone.


2011 ◽  
Vol 685 ◽  
pp. 54-82 ◽  
Author(s):  
Hieu T. Pham ◽  
Sutanu Sarkar

AbstractThe fine-scale response of a subsurface stable stratified jet subject to the forcing of surface wind stress and surface cooling is investigated using direct numerical simulation. The initial velocity profile consists of a symmetric jet located below a surface layer driven by a constant wind stress. The initial density profile is well-mixed in the surface layer and linearly stratified in both upper and lower flanks of the jet. The minimum value of the gradient Richardson number in the upper flank of the jet exceeds the critical value of 0.25 for linear shear instability. Broadband finite-amplitude fluctuations are introduced to the surface layer to initiate the simulation. Turbulence is generated in the surface layer and deepens into the jet upper flank. Internal waves generated by the turbulent surface layer are observed to propagate downward across the jet. The momentum flux carried by the waves is significantly smaller than the Reynolds shear stress extracted from the background velocity. The wave energy flux is also smaller than the turbulence production by mean shear. Ejections of fluid parcels by horseshoe-like vortices cause intermittent patches of intense dissipation inside the jet upper flank where the background gradient Richardson number is larger than 0.25. Drag due to the wind stress is smaller than the drag caused by turbulent stress in the flow. Analysis of the mean and turbulent kinetic energy budgets suggests that the energy input by surface forcing is considerably smaller than the energy extracted from the initially imposed background shear in the surface layer.


2007 ◽  
Vol 127 (1) ◽  
pp. 57-72 ◽  
Author(s):  
Ben B. Balsley ◽  
Gunilla Svensson ◽  
Michael Tjernström

Sign in / Sign up

Export Citation Format

Share Document