Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns

2018 ◽  
Vol 846 ◽  
pp. 846-876 ◽  
Author(s):  
Jonathan M. Aurnou ◽  
Vincent Bertin ◽  
Alexander M. Grannan ◽  
Susanne Horn ◽  
Tobias Vogt

Earth’s magnetic field is generated by convective motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum, and thus the Prandtl number$Pr$is well below unity. The thermally driven convective flow dynamics of liquid metals are very different from moderate-$Pr$fluids, such as water and those used in current dynamo simulations. In order to characterise rapidly rotating thermal convection in low-$Pr$number fluids, we have performed laboratory experiments in a cylinder of aspect ratio$\unicode[STIX]{x1D6E4}=1.94$using liquid gallium ($Pr\simeq 0.025$) as the working fluid. The Ekman number varies from$E\simeq 5\times 10^{-6}$to$5\times 10^{-5}$and the Rayleigh number varies from$Ra\simeq 2\times 10^{5}$to$1.5\times 10^{7}$. Using spectral analysis stemming from point-wise temperature measurements within the fluid and measurements of the Nusselt number$Nu$, we characterise the different styles of low-$Pr$rotating convective flow. The convection threshold is first overcome in the form of container-scale inertial oscillatory modes. At stronger forcing, sidewall-attached modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk oscillatory modes. At$Ra$well below the values where steady rotating columnar convection occurs, the bulk flow becomes turbulent. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasisteady columns, as in moderate-$Pr$fluids, but in the form of oscillatory convective motions. Thus, thermally driven flows in low-$Pr$geophysical and astrophysical fluids can differ substantively from those occurring in$Pr\simeq 1$models. Furthermore, our experimental results show that relatively low-frequency wall modes are an essential dynamical component of rapidly rotating convection in liquid metals.

Soft Science ◽  
2021 ◽  
Author(s):  
Ying-Xin Zhou ◽  
Jia-Sheng Zu ◽  
Jing Liu

Magnetism and magnetic monopoles are among the most classical issues in physics. Conventional magnets are generally composed of rigid materials and may face challenges in extreme situations. Here, as an alternative to rigid magnets, we propose, for the first time, the generation of fluidic endogenous magnetism and construct a magnetic monopole through tuning with a liquid metal machine. Based on theoretical interpretation and conceptual experimental observations, we illustrate that when liquid metals, such as gallium alloy, in a solution rotate under electrical actuation, they form an endogenous magnetic field inside. This explains the phenomenon where two such discrete metal droplets can easily fuse together, indicating their reciprocal attraction via the N and S poles. Furthermore, we reveal that a self-fueled liquid metal motor also runs as an endogenous fluidic magnet owing to the electromagnetic homology. When aluminum is added to liquid gallium in solution, it forms a spin motor and dynamically variable charge distribution that produces endogenous magnetism inside. This explains the common phenomena where reflective collision and attractive fusion between running liquid metal motors occur, which are partially caused by the dynamic adjustment of their N and S polarities, respectively. On this basis, more experimental approaches capable of generating dynamic electrical fields also work for the same target. Finally, we propose that such a fluidic endogenous magnet could lead to a magnetic monopole and four technical routes to realize this are suggested. The first involves matching the interior flow of liquid metal machines. The second is the superposition between an external electric effect and the magnetic field. The third route involves composite construction between magnetic particles and a liquid metal spin motor. Finally, chemical methods, such as via galvanic cell reactions, are proposed. Overall, the present theory and identified experimental evidence illustrate the role of a liquid metal machine as a fluidic endogenous magnet and highlight promising methods for the realization of magnetic monopoles. A group of unconventional magnetoelectric devices and applications could therefore be possible in the near future.


Author(s):  
Lars Duggen ◽  
Stefan Mátéfi-Tempfli

Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review of the necessary theory and find numerically the forces to be in the 100μN range for liquid metals as mercury and liquid Gallium suspended between electrodes of 20μm radius.


2021 ◽  
Vol 7 (1) ◽  
pp. eabe3767
Author(s):  
Chunhui Wang ◽  
Yan Gong ◽  
Benjamin V. Cunning ◽  
Seunghwan Lee ◽  
Quan Le ◽  
...  

We report a versatile method to make liquid metal composites by vigorously mixing gallium (Ga) with non-metallic particles of graphene oxide (G-O), graphite, diamond, and silicon carbide that display either paste or putty-like behavior depending on the volume fraction. Unlike Ga, the putty-like mixtures can be kneaded and rolled on any surface without leaving residue. By changing temperature, these materials can be stiffened, softened, and, for the G-O–containing composite, even made porous. The gallium putty (GalP) containing reduced G-O (rG-O) has excellent electromagnetic interference shielding effectiveness. GalP with diamond filler has excellent thermal conductivity and heat transfer superior to a commercial liquid metal–based thermal paste. Composites can also be formed from eutectic alloys of Ga including Ga-In (EGaIn), Ga-Sn (EGaSn), and Ga-In-Sn (EGaInSn or Galinstan). The versatility of our approach allows a variety of fillers to be incorporated in liquid metals, potentially allowing filler-specific “fit for purpose” materials.


2000 ◽  
Author(s):  
V. Sazonov ◽  
G. Putin ◽  
I. Babushkin ◽  
G. Bogatyrev ◽  
A. Glukhov ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Hiroki Ota ◽  
Nyamjargal Ochirkhuyag ◽  
Ryosuke Matsuda ◽  
Zihao Song ◽  
Fumika Nakamura ◽  
...  

Research on liquid metals has been steadily garnering more interest in recent times because the properties of these metals are conducive to flexible electronics applications; further, these metals are in...


2013 ◽  
Vol 23 (2) ◽  
pp. 137-137 ◽  
Author(s):  
Vijay Sivan ◽  
Shi-Yang Tang ◽  
Anthony P. O'Mullane ◽  
Phred Petersen ◽  
Nicky Eshtiaghi ◽  
...  
Keyword(s):  

1981 ◽  
Vol 102 ◽  
pp. 85-100 ◽  
Author(s):  
D. E. Fitzjarrald

Convection flows have been systematically observed in a layer of fluid between two isothermal horizontal boundaries. The working fluid was a nematic liquid crystal, which exhibits a liquid–liquid phase change at which latent heat is released and the density changed. In addition to ordinary Rayleigh–Bénard convection when either phase is present alone, there exist two distinct types of convective motions initiated by the unstable density difference. When a thin layer of heavy fluid is present near the top boundary, hexagons with downgoing centres exist with no imposed thermal gradient. When a thin layer of light fluid is brought on near the lower boundary, the hexagons have upshooting centres. In both cases, the motions are kept going once they are initiated by the instability due to release of latent heat. Relation of the results to applicable theories is discussed.


2007 ◽  
Vol 561-565 ◽  
pp. 1699-1701
Author(s):  
Nobuyuki Takahira ◽  
Takeshi Yoshikawa ◽  
Toshihiro Tanaka

Unusual wetting behavior of liquid Cu was found on a surface-oxidized iron substrate in reducing atmosphere. Liquid Cu wetted and spread very widely on the iron substrate when a droplet was attached with the substrate in Ar-10%H2 after the surface oxidation of the substrate. The oxidationreduction process fabricates a porous layer at the surface of the iron substrate. The pores in the porous iron layer are 3-dimensionally interconnected. Thus, liquid metals, which are contacted with the reduced iron samples, penetrate into these pores by capillary force to cause the unusual wetting behavior. It has been already confirmed that liquid Ag, Sn, In and Bi show this phenomenon onto surface-porous iron samples as well as liquid Cu. This unusual wetting behavior of a liquid metal has been correlated to the normal contact angle of the liquid metal on a flat iron substrate.


Author(s):  
A. Lipchitz ◽  
Lilian Laurent ◽  
G. D. Harvel

Several Generation IV nuclear reactors, such as sodium fast reactors and lead-bismuth fast reactors, use liquid metal as a coolant. In order to better understand and improve the thermal hydraulics of liquid metal cooled GEN IV nuclear reactors liquid metal flow needs to be studied in experimental circulation loops. Experimental circulation loops are often located in a laboratory setting. However, studying liquid metal two phase flow in laboratory settings can be difficult due to the high temperatures and safety hazards involved with traditional liquid metals such as sodium and lead-bismuth. One solution is to use a low melt metal alloy that is as benign as reasonably achievable. Field’s metal is a eutectic alloy of 51% Indium, 32.5% Bismuth and 16.5% Tin by weight and has a melting point of 335K making it ideal for use in a laboratory setting. A study is undertaken to determine its suitability to use in a two-phase experimental flow loop enhanced by magnetohydrodynamic forces. The study investigated its reactivity with air and water, its ability to be influenced by magnetic fields, its ability to flow, and its ease of manufacture. The experiments melted reference samples of Field’s metal and observed its behaviour in a glass beaker, submerged in water and an inclined stainless steel pipe. Then Field’s metal was manufactured in the laboratory and compared to the sample using the same set of experiments and standards. To determine Field’s metal degree of magnetism permanent neodymium magnets were used. Their strength was determined using a Gaussmeter. All experiments were recorded using a COHU digital camera. Image analysis was then performed on the video to determine any movements initiated by the magnetic field forces. In conclusion, Field’s metal is more than suitable for use in experimental settings as it is non-reactive, non-toxic, simple to manufacture, easy to use, and responds to a magnetic force.


Sign in / Sign up

Export Citation Format

Share Document