Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope

2018 ◽  
Vol 847 ◽  
pp. 186-227 ◽  
Author(s):  
P. Higuera ◽  
P. L.-F. Liu ◽  
C. Lin ◽  
W.-Y. Wong ◽  
M.-J. Kao

The main goal of this paper is to provide insights into swash flow dynamics, generated by a non-breaking solitary wave on a steep slope. Both laboratory experiments and numerical simulations are conducted to investigate the details of runup and rundown processes. Special attention is given to the evolution of the bottom boundary layer over the slope in terms of flow separation, vortex formation and the development of a hydraulic jump during the rundown phase. Laboratory experiments were performed to measure the flow velocity fields by means of high-speed particle image velocimetry (HSPIV). Detailed pathline patterns of the swash flows and free-surface profiles were also visualized. Highly resolved computational fluid dynamics (CFD) simulations were carried out. Numerical results are compared with laboratory measurements with a focus on the velocities inside the boundary layer. The overall agreement is excellent during the initial stage of the runup process. However, discrepancies in the model/data comparison grow as time advances because the numerical model does not simulate the shoreline dynamics accurately. Introducing small temporal and spatial shifts in the comparison yields adequate agreement during the entire rundown process. Highly resolved numerical solutions are used to study physical variables that are not measured in laboratory experiments (e.g. pressure field and bottom shear stress). It is shown that the main mechanism for vortex shedding is correlated with the large pressure gradient along the slope as the rundown flow transitions from supercritical to subcritical, under the developing hydraulic jump. Furthermore, the bottom shear stress analysis indicates that the largest values occur at the shoreline and that the relatively large bottom shear stress also takes place within the supercritical flow region, being associated with the backwash vortex system rather than the plunging wave. It is clearly demonstrated that the combination of laboratory observations and numerical simulations have indeed provided significant insights into the swash flow processes.

Author(s):  
Pablo Higuera ◽  
Philip L.-F. Liu ◽  
Cheng Lin ◽  
Wei-Ying Wong ◽  
Ming-Jer Kao

In this paper we study the swash processes generated by a nonbreaking solitary wave running up and down a steep slope (1:3). We use experimental data to study flow features and velocities inside the boundary layer, and numerical modelling to investigate variables not measured during the laboratory experiments, such as pressures and bottom shear stress. We focus on the mechanisms that produce flow separation and vortex formation. Particularly, we study a system of vortices generated under a hydraulic jump during the rundown phase, which was first observed by Matsunaga & Honji (1980).


2015 ◽  
Vol 09 (05) ◽  
pp. 1540002 ◽  
Author(s):  
Chang Lin ◽  
Ming-Jer Kao ◽  
Guang-Wei Tzeng ◽  
Wei-Ying Wong ◽  
James Yang ◽  
...  

The characteristics of flow fields for a complete evolution of the non-breaking solitary wave, having a wave-height to water-depth ratio of 0.363 and propagating over a 1:5 sloping bottom, are investigated experimentally. This study mainly focuses on the occurrences of both flow separation on the boundary layer under an adverse pressure gradient and subsequent hydraulic jump with the abrupt rising of free surface during rundown motion of the shoaling wave, together with emphasis on the evolution of vortex structures underlying the separated shear layer and hydraulic jump. A flow visualization technique with particle trajectory method and a high-speed particle image velocimetry (HSPIV) system with a high-speed digital camera were used. Based on the instantaneous flow images visualized and/or the ensemble-averaged velocity fields measured, the following interesting features, which are unknown up-to-date, are presented and discussed in this study: (1) Flow bifurcation occurring on both offshore and onshore sides of the explicit demarcation curve and the stagnation point during runup motion; (2) The dependence of the diffuser-like flow field, being changed from the supercritical flow in the shallower region to the subcritical flow in the deeper counterpart, on the Froude number during the early and middle stages of rundown motion; (3) The positions and times for the occurrences of the incipient flow separation and the sudden rising of free surface of the hydraulic jump; (4) The associated movement and evolution of vortex structures under the separated shear layer, the hydraulic jump and/or the high-speed external main stream of the retreated flow; and (5) The entrainment of air bubbles from the free surface into the external main stream of the retreated flow.


1966 ◽  
Vol 26 (4) ◽  
pp. 793-806 ◽  
Author(s):  
George R. Inger

The approach to equilibrium in a non-equilibrium-dissociating boundary-layer flow along a catalytic or non-catalytic surface is treated from the standpoint of a singular perturbation problem, using the method of matched asymptotic expansions. Based on a linearized reaction rate model for a diatomic gas which facilitates closed-form analysis, a uniformly valid solution for the near equilibrium behaviour is obtained as the composite of appropriate outer and inner solutions. It is shown that, under near equilibrium conditions, the primary non-equilibrium effects are buried in a thin sublayer near the body surface that is described by the inner solution. Applications of the theory are made to the calculation of heat transfer and atom concentrations for blunt body stagnation point and high-speed flat-plate flows; the results are in qualitative agreement with the near equilibrium behaviour predicted by numerical solutions.


1995 ◽  
Vol 2 (1) ◽  
pp. 30-48 ◽  
Author(s):  
E. Hernández ◽  
J. Díaz ◽  
L. C. Cana ◽  
A. García

Abstract. The atmospheric behaviour near an orographic obstacle has been thoroughly studied in the last decades. The first papers in this field were mainly theoretical, being more recent the laboratory experiments which represented that behaviour in ideal conditions. The numerical simulations have been addressed lately thanks to the development of computers. But the study of meteorology in complex terrain has lacked experiments in the atmosphere to understand the real influence the relief has on it. In this paper the problem has been considered from the last perspective, and so, seasons of measure of the atmospheric variables within the boundary layer have been organized with the goal of checking existing theories and bringing right conclusions from real experiment in the atmosphere. Controverted aspects of linear and nonlinear theories, as the location of critical points upwind and downwind of an orographic obstacle, will be analyzed. The results obtained show a large adequacy between the forecasted behaviour and the experimentally detected.


1973 ◽  
Vol 58 (3) ◽  
pp. 581-593 ◽  
Author(s):  
R. A. Antonia ◽  
J. D. Atkinson

The cumulant-discard approach is used to predict the third- and fourth-order moments and the probability density of turbulent Reynolds shear stress fluctuations uv, the streamwise and normal velocity fluctuations being represented by u and v respectively. Measurements of these quantities in a turbulent boundary layer are presented, with the required statistics of uv obtained by the use of a high-speed digital data-acquisition system. Including correlations between u and u up to the fourth order, the cumulant-discard predictions are in close agreement with the measurements in the inner region of the layer but only qualitatively follow the experimental results in the outer intermittent region. In this latter region, predictions for the third- and fourth-order moments of uv are also obtained by assuming that the properties of both turbulent and irrotational fluctuations are Gaussian and by using some of the available conditional averages of u, v and uv.


2014 ◽  
Vol 753 ◽  
pp. 554-559 ◽  
Author(s):  
Yong Sung Park ◽  
Joris Verschaeve ◽  
Geir K. Pedersen ◽  
Philip L.-F. Liu

AbstractWe address two shortcomings in the article by Liu, Park & Cowen (J. Fluid Mech., vol. 574, 2007, pp. 449–463), which gave a theoretical and experimental treatise of the bottom boundary-layer under a solitary wave.


Sign in / Sign up

Export Citation Format

Share Document