Study on Flow Fields of Boundary-Layer Separation and Hydraulic Jump during Rundown Motion of Shoaling Solitary Wave

2015 ◽  
Vol 09 (05) ◽  
pp. 1540002 ◽  
Author(s):  
Chang Lin ◽  
Ming-Jer Kao ◽  
Guang-Wei Tzeng ◽  
Wei-Ying Wong ◽  
James Yang ◽  
...  

The characteristics of flow fields for a complete evolution of the non-breaking solitary wave, having a wave-height to water-depth ratio of 0.363 and propagating over a 1:5 sloping bottom, are investigated experimentally. This study mainly focuses on the occurrences of both flow separation on the boundary layer under an adverse pressure gradient and subsequent hydraulic jump with the abrupt rising of free surface during rundown motion of the shoaling wave, together with emphasis on the evolution of vortex structures underlying the separated shear layer and hydraulic jump. A flow visualization technique with particle trajectory method and a high-speed particle image velocimetry (HSPIV) system with a high-speed digital camera were used. Based on the instantaneous flow images visualized and/or the ensemble-averaged velocity fields measured, the following interesting features, which are unknown up-to-date, are presented and discussed in this study: (1) Flow bifurcation occurring on both offshore and onshore sides of the explicit demarcation curve and the stagnation point during runup motion; (2) The dependence of the diffuser-like flow field, being changed from the supercritical flow in the shallower region to the subcritical flow in the deeper counterpart, on the Froude number during the early and middle stages of rundown motion; (3) The positions and times for the occurrences of the incipient flow separation and the sudden rising of free surface of the hydraulic jump; (4) The associated movement and evolution of vortex structures under the separated shear layer, the hydraulic jump and/or the high-speed external main stream of the retreated flow; and (5) The entrainment of air bubbles from the free surface into the external main stream of the retreated flow.

2018 ◽  
Vol 847 ◽  
pp. 186-227 ◽  
Author(s):  
P. Higuera ◽  
P. L.-F. Liu ◽  
C. Lin ◽  
W.-Y. Wong ◽  
M.-J. Kao

The main goal of this paper is to provide insights into swash flow dynamics, generated by a non-breaking solitary wave on a steep slope. Both laboratory experiments and numerical simulations are conducted to investigate the details of runup and rundown processes. Special attention is given to the evolution of the bottom boundary layer over the slope in terms of flow separation, vortex formation and the development of a hydraulic jump during the rundown phase. Laboratory experiments were performed to measure the flow velocity fields by means of high-speed particle image velocimetry (HSPIV). Detailed pathline patterns of the swash flows and free-surface profiles were also visualized. Highly resolved computational fluid dynamics (CFD) simulations were carried out. Numerical results are compared with laboratory measurements with a focus on the velocities inside the boundary layer. The overall agreement is excellent during the initial stage of the runup process. However, discrepancies in the model/data comparison grow as time advances because the numerical model does not simulate the shoreline dynamics accurately. Introducing small temporal and spatial shifts in the comparison yields adequate agreement during the entire rundown process. Highly resolved numerical solutions are used to study physical variables that are not measured in laboratory experiments (e.g. pressure field and bottom shear stress). It is shown that the main mechanism for vortex shedding is correlated with the large pressure gradient along the slope as the rundown flow transitions from supercritical to subcritical, under the developing hydraulic jump. Furthermore, the bottom shear stress analysis indicates that the largest values occur at the shoreline and that the relatively large bottom shear stress also takes place within the supercritical flow region, being associated with the backwash vortex system rather than the plunging wave. It is clearly demonstrated that the combination of laboratory observations and numerical simulations have indeed provided significant insights into the swash flow processes.


Author(s):  
Matthieu A. Andre ◽  
Philippe M. Bardet

Shear instabilities induced by the relaxation of laminar boundary layer at the free surface of a high speed liquid jet are investigated experimentally. Physical insights into these instabilities and the resulting capillary wave growth are gained by performing non-intrusive measurements of flow structure in the direct vicinity of the surface. The experimental results are a combination of surface visualization, planar laser induced fluorescence (PLIF), particle image velocimetry (PIV), and particle tracking velocimetry (PTV). They suggest that 2D spanwise vortices in the shear layer play a major role in these instabilities by triggering 2D waves on the free surface as predicted by linear stability analysis. These vortices, however, are found to travel at a different speed than the capillary waves they initially created resulting in interference with the waves and wave growth. A new experimental facility was built; it consists of a 20.3 × 146.mm rectangular water wall jet with Reynolds number based on channel depth between 3.13 × 104 to 1.65 × 105 and 115. to 264. based on boundary layer momentum thickness.


2006 ◽  
Author(s):  
Jiangang Zhao ◽  
Roger E. Khayat

The similarity solutions are presented for the wall flow which is formed when a smooth planar jet of power-law fluids impinges vertically on to a horizontal plate, and spreads out in a thin layer bounded by a hydraulic jump. This problem is formulated analogous to radial jet flow problem and the solution procedure is accounted for by means of similarity solution of the boundary-layer equation [1] for Newtonian fluids. For the convenience of analysis, the flow may be divided into three regions, namely a developing boundary-layer region, a fully viscous boundary-layer region, and a hydraulic jump region. The similarity solutions of the film thickness and free surface velocity in fully viscous boundary-layer region include unknown constant L, which is solved numerically and approximately in the developing boundary-layer flow region. Comparison between the numerical and approximate solutions leads generally to good agreement, except for severely shear-thinning fluids. The boundary-layer solution depends on two parameters: power-law index n and α, the dimensionless flow parameters. The effect of α on film thickness and free surface velocity is investigated. The relations between the position of the hydraulic jump and dimensionless flow parameter are obtained and the effect of α on the position of the jump is presented.


Author(s):  
Shengjun Zhou ◽  
Haiwang Li ◽  
Zhi Tao ◽  
Ruquan You ◽  
Haoyu Duan

In the current study, the influence of different rotation conditions on the flow behavior is experimentally investigated by a new system which is designed for time-resolved PIV measurements of the smooth channels at rotation conditions. The Reynolds number equals 15000 and the rotation number ranges from 0 to 0.392 with an interval of 0.098. This new time-resolved Particle Image Velocimetry system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode can provide a less than 1mm thickness sheet light. 6400 frames can be captured in one second by the high-speed camera. These two parts of the system are fixed on a rotating disk. In this case, the relative velocity of flows in the rotating smooth square channel can be measured directly to reduce the measurement error. This system makes high-speed camera close to the rotating channel, which allows a high resolution for the measurements of main stream. In addition, high accuracy and temporal resolution realize a detailed analysis of boundary layer characteristics in rotation conditions. Based on this system, experimental investigation has been undertaken. Results are presented of the evolution of velocity and boundary layer thickness at various rotation numbers and different circumferential positions.


Author(s):  
Jeonghwa Seo ◽  
Bumwoo Han ◽  
Shin Hyung Rhee

Effects of free surface on development of turbulent boundary layer and wake fields were investigated. By measuring flow field around a surface piercing cylinder in various advance speed conditions in a towing tank, free surface effects were identified. A towed underwater Stereoscopic Particle Image Velocimetry (SPIV) system was used to measure the flow field under free surface. The cross section of the test model was water plane shape of the Wigley hull, of which longitudinal length and width were 1.0 m and 100 mm, respectively. With sharp bow shape and slender cross section, flow separation was not expected in two-dimensional flow. Flow fields near the free-surface and in deep location that two-dimensional flow field was expected were measured and compared to identify free-surface effects. Some planes perpendicular to longitudinal direction near the model surface and behind the model were selected to track development of turbulent boundary layer. Froude numbers of the test conditions were from 0.126 to 0.40 and corresponding Reynolds numbers were from 395,000 to 1,250,000. In the lowest Froude number condition, free-surface wave was hardly observed and only free surface effects without surface wave could be identified while violent free-surface behavior due to wave-induced separation dominated the flow fields in the highest Froude number condition. From the instantaneous velocity fields, Time-mean velocity, turbulence kinetic energy, and flow structure derived by proper orthogonal decomposition (POD) were analyzed. As the free-surface effect, development of retarded wake, free-surface waves, and wave-induced separation were mainly observed.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Brian R. McAuliffe ◽  
Metin I. Yaras

Through experiments using two-dimensional particle-image velocimetry (PIV), this paper examines the nature of transition in a separation bubble and manipulations of the resultant breakdown to turbulence through passive means of control. An airfoil was used that provides minimal variation in the separation location over a wide operating range, with various two-dimensional modifications made to the surface for the purpose of manipulating the transition process. The study was conducted under low-freestream-turbulence conditions over a flow Reynolds number range of 28,000–101,000 based on airfoil chord. The spatial nature of the measurements has allowed identification of the dominant flow structures associated with transition in the separated shear layer and the manipulations introduced by the surface modifications. The Kelvin–Helmholtz (K-H) instability is identified as the dominant transition mechanism in the separated shear layer, leading to the roll-up of spanwise vorticity and subsequent breakdown into small-scale turbulence. Similarities with planar free-shear layers are noted, including the frequency of maximum amplification rate for the K-H instability and the vortex-pairing phenomenon initiated by a subharmonic instability. In some cases, secondary pairing events are observed and result in a laminar intervortex region consisting of freestream fluid entrained toward the surface due to the strong circulation of the large-scale vortices. Results of the surface-modification study show that different physical mechanisms can be manipulated to affect the separation, transition, and reattachment processes over the airfoil. These manipulations are also shown to affect the boundary-layer losses observed downstream of reattachment, with all surface-indentation configurations providing decreased losses at the three lowest Reynolds numbers and three of the five configurations providing decreased losses at the highest Reynolds number. The primary mechanisms that provide these manipulations include: suppression of the vortex-pairing phenomenon, which reduces both the shear-layer thickness and the levels of small-scale turbulence; the promotion of smaller-scale turbulence, resulting from the disturbances generated upstream of separation, which provides quicker transition and shorter separation bubbles; the elimination of the separation bubble with transition occurring in an attached boundary layer; and physical disturbance, downstream of separation, of the growing instability waves to manipulate the vortical structures and cause quicker reattachment.


2013 ◽  
Vol 734 ◽  
pp. 509-534 ◽  
Author(s):  
Mohammad Omidyeganeh ◽  
Ugo Piomelli

AbstractWe performed large-eddy simulations of the flow over a series of three-dimensional (3D) dunes at laboratory scale. The bedform three-dimensionality was imposed by shifting a standard two-dimensional (2D) dune shape in the streamwise direction according to a sine wave. The turbulence statistics were discussed in Part 1 of this article (Omidyeganeh & Piomelli, J. Fluid Mech., vol. 721, 2013, pp. 454–483). Coherent flow structures and their statistics are discussed concentrating on two cases with the same crestline amplitudes and wavelengths but different crestline alignments: in-phase and staggered. The present paper shows that the induced large-scale mean streamwise vortices are the primary factor that alters the features of the instantaneous flow structures. Wall turbulence is insensitive to the crestline alignment; alternating high- and low-speed streaks appear in the internal boundary layer developing on the stoss side, whereas over the node plane (the plane normal to the spanwise direction at the node of the crestline), they are inclined towards the lobe plane (the plane normal to the spanwise direction at the most downstream point of the crestline) due to the mean spanwise pressure gradient. Spanwise vortices (rollers) generated by Kelvin–Helmholtz instability in the separated shear layer appear regularly over the lobe with much larger length scale than those over the saddle (the plane normal to the spanwise direction at the most upstream point of the crestline). Rollers over the lobe may extend to the saddle plane and affect the reattachment features; their shedding is more frequent than in 2D geometries. Vortices shed from the separated shear layer in the lobe plane undergo a three-dimensional instability while being advected downstream, and rise toward the free surface. They develop into a horseshoe shape (similar to the 2D case) and affect the whole channel depth, whereas those generated near the saddle are advected downstream and toward the bed. When the tip of such a horseshoe reaches the free surface, the ejection of flow at the surface causes ‘boils’ (upwelling events on the surface). Strong boil events are observed on the surface of the lobe planes of 3D dunes more frequently than in the saddle planes. They also appear more frequently than in the corresponding 2D geometry. The crestline alignment of the dune alters the dynamics of the flow structures, in that they appear in the lobe plane and are advected towards the saddle plane of the next dune, where they are dissipated. Boil events occur at a higher frequency in the staggered alignment, but with less intensity than in the in-phase alignment.


Author(s):  
Masahito Asai ◽  
Takeshi Imai

Receptivity of the free shear layer developing from a 90-degrees rear-edge of boundary-layer plate to acoustic disturbances is examined experimentally to clarify the dependency of the receptivity coefficient on the rear-edge curvature. The results show that for finite rear-edge curvatures, the receptivity coefficient decreases with increasing the disturbance frequency while it is almost independent of the frequency for the sharp rear-edge over the frequency range examined. The decrease in the receptivity coefficient for the rounded rear-edge is attributed to the fact that the sound-induced Stokes layer which is the vorticity fluctuation developing into the free-shear instability mode is shed into the off-centerline of the separated shear layer.


1994 ◽  
Vol 116 (2) ◽  
pp. 238-246 ◽  
Author(s):  
S. Acharya ◽  
S. Dutta ◽  
T. A. Myrum ◽  
R. S. Baker

The ability of the nonlinear k–ε turbulence model to predict the flow in a separated duct flow past a wall-mounted, two-dimensional rib was assessed through comparisons with the standard k–ε model and experimental results. Improved predictions of the streamwise turbulence intensity and the mean streamwise velocities near the high-speed edge of the separated shear layer and in the flow downstream of reattachment were obtained with the nonlinear model. More realistic predictions of the production and dissipation of the turbulent kinetic energy near reattachment were also obtained. Otherwise, the performance of the two models was comparable, with both models performing quite well in the core flow regions and close to reattachment and both models performing poorly in the separated and shear-layer regions close to the rib.


1951 ◽  
Vol 47 (3) ◽  
pp. 528-544 ◽  
Author(s):  
A. Robinson

AbstractThe field of flow due to a shock wave or expansion wave undergoes a considerable modification in the neighbourhood of a rigid wall. It has been suggested that the resulting propagation of the disturbance upstream is largely due to the fact that the main flow in the boundary layer is subsonic. Simple models were produced by Howarth, and Tsien and Finston, to test this suggestion, assuming the co-existence of layers of uniform supersonic and subsonic main-stream velocities. The analysis developed in the present paper is designed to cope with any arbitrary continuous velocity profile which varies from zero at the wall to a constant supersonic velocity in the main stream. Numerical examples are calculated, and it is concluded that a simple inviscid theory is incapable of giving an adequate theoretical account of the phenomenon. The analysis includes a detailed discussion of the process of continuous wave reflexion in a supersonic shear layer.


Sign in / Sign up

Export Citation Format

Share Document