Experimental investigation of coherent structures of a three-dimensional separated turbulent boundary layer

2018 ◽  
Vol 859 ◽  
pp. 1-32 ◽  
Author(s):  
Mohammad Elyasi ◽  
Sina Ghaemi

Coherent structures of a three-dimensional (3D) separation due to an adverse pressure gradient are investigated experimentally. The flow set-up consists of a flat plate to develop a turbulent boundary layer upstream of an asymmetric two-dimensional diffuser with one diverging surface. The diffuser surface has an initial mild curvature followed by a flat section where flow separation occurs. The top and the two sidewalls of the diffuser are not equipped with any flow control mechanism to form a 3D separation. Planar particle image velocimetry (PIV) using four side-by-side cameras is applied to characterize the flow with high spatial resolution over a large streamwise-wall-normal field of view (FOV). Tomographic PIV (tomo-PIV) is also applied for volumetric measurement in a domain flush with the flat surface of the diffuser. The mean flow obtained from averaging instantaneous velocity fields of this intermittent unsteady flow appears as a vortex with an elliptical cross-section. The major axis of the ellipse is tilted with respect to the streamwise direction. As a result, the average velocity in the mid-span of the diffuser has an upstream forward flow and a downstream backward flow, separated by a point of zero wall shear stress. Sweep motions mainly carry out transport of turbulent kinetic energy upstream of this point, while ejections dominate at the downstream region. In the instantaneous flow fields, forward and backward flows have equivalent strength, and the separation front is extended in the spanwise direction. The conditional average of the separation instants forms a saddle-point structure with streamlines converging in the spanwise direction. Proper orthogonal decomposition (POD) of the tomo-PIV data demonstrates that about 42 % of the turbulent kinetic energy is present in the first pair of modes, with a strong spanwise component. The spatial modes of POD also show focus, node and saddle-point structures. The average of the coefficients of the dominant POD modes during the separation events is used to develop a reduced-order model (ROM). Based on the ROM, the instantaneous 3D separation over the diffuser is a saddle-point structure interacting with focus-type structures.

2000 ◽  
Vol 423 ◽  
pp. 175-203 ◽  
Author(s):  
CHANDRASEKHAR KANNEPALLI ◽  
UGO PIOMELLI

A three-dimensional shear-driven turbulent boundary layer over a flat plate generated by moving a section of the wall in the transverse direction is studied using large-eddy simulations. The configuration is analogous to shear-driven boundary layer experiments on spinning cylinders, except for the absence of curvature effects. The data presented include the time-averaged mean flow, the Reynolds stresses and their budgets, and instantaneous flow visualizations. The near-wall behaviour of the flow, which was not accessible to previous experimental studies, is investigated in detail. The transverse mean velocity profile develops like a Stokes layer, only weakly coupled to the streamwise flow, and is self-similar when scaled with the transverse wall velocity, Ws. The axial skin friction and the turbulent kinetic energy, K, are significantly reduced after the imposition of the transverse shear, due to the disruption of the streaky structures and of the outer-layer vortical structures. The turbulent kinetic energy budget reveals that the decrease in production is responsible for the reduction of K. The flow then adjusts to the perturbation, reaching a quasi-equilibrium three-dimensional collateral state. Following the cessation of the transverse motion, similar phenomena take place again. The flow eventually relaxes back to a two-dimensional equilibrium boundary layer.


1997 ◽  
Vol 350 ◽  
pp. 189-208 ◽  
Author(s):  
DEBORA A. COMPTON ◽  
JOHN K. EATON

An experiment was performed to measure near-wall velocity and Reynolds stress profiles in a pressure-driven three-dimensional turbulent boundary layer. An initially two-dimensional boundary layer (Reθ≈4000) was exposed to a strong spanwise pressure gradient. At the furthest downstream measurement locations there was also a fairly strong favourable streamwise pressure gradient.Measurements were made using a specially designed near-wall laser-Doppler anemometer (LDA), in addition to conventional methods. The LDA used short focal length optics, a mirror probe suspended in the flow, and side-scatter collection to achieve a measuring volume 35 μm in diameter and approximately 65 μm long.The data presented include mean velocity measurements and Reynolds stresses, all extending well below y+=10, at several profile locations. Terms of the turbulent kinetic energy transport equation are presented at two profile locations. The mean flow is nearly collateral (i.e. W is proportional to U) at the wall. Turbulent kinetic energy is mildly suppressed in the near-wall region and the shear stress components are strongly affected by three-dimensionality. As a result, the ratio of shear stress to turbulent kinetic energy is suppressed throughout most of the boundary layer. The angles of stress and strain are misaligned, except very near the wall (around y+=10) where the angles nearly coincide with the mean flow angle. Three-dimensionality appears to mildly reduce the production of turbulent kinetic energy.


2017 ◽  
Vol 835 ◽  
pp. 217-251 ◽  
Author(s):  
Blair A. Johnson ◽  
Edwin A. Cowen

We perform an experimental study to investigate the turbulent boundary layer above a stationary solid glass bed in the absence of mean shear. High Reynolds number $(Re_{\unicode[STIX]{x1D706}}\sim 300)$ horizontally homogeneous isotropic turbulence is generated via randomly actuated synthetic jet arrays (RASJA – Variano & Cowen J. Fluid Mech. vol. 604, 2008, pp. 1–32). Each of the arrays is controlled by a spatio-temporally varying algorithm, which in turn minimizes the formation of secondary mean flows. One array consists of an $8\times 8$ grid of jets, while the other is a $16\times 16$ array. Particle image velocimetry measurements are used to study the isotropic turbulent region and the boundary layer formed beneath as the turbulence encounters a stationary wall. The flow is characterized with statistical metrics including the mean flow and turbulent velocities, turbulent kinetic energy, integral scales and the turbulent kinetic energy transport equation, which includes the energy dissipation rate, production and turbulent transport. The empirical constant in the Tennekes (J. Fluid Mech. vol. 67, 1975, pp. 561–567) model of Eulerian frequency spectra is calculated based on the dissipation results and temporal frequency spectra from acoustic Doppler velocimetry measurements. We compare our results to prior literature that addresses mean shear free turbulent boundary layer characterizations via grid-stirred tank experiments, moving-bed experiments, rapid-distortion theory and direct numerical simulations in a forced turbulent box. By varying the operational parameters of the randomly actuated synthetic jet array, we also find that we are able to control the turbulence levels, including integral length scales and dissipation rates, by changing the mean on-times in the jet algorithm.


1994 ◽  
Vol 98 (978) ◽  
pp. 311-318
Author(s):  
C.P. Yeung ◽  
L.C. Squire

SummaryThe three-dimensional vortex/boundary layer interaction of a type which may occur on a high-lift aerofoil has been studied. The experimental configuration simulates the trailing vortex system generated by two differentially-deflected slats which interact with an otherwise two-dimensional boundary layer developed on the wing surface under a nominal zero pressure gradient. The mean and turbulent flowfields are measured by a triple hot-wire system. The measurements show that the trailing vortex system includes the vortex sheets shed from the slats and the single vortex formed at the discontinuity between them. The single vortex moves sideways and interacts with the boundary layer as it develops downstream. During the interaction with the boundary layer, the low momentum, high turbulent-kinetic energy flow carrying negative longitudinal vorticity is entrained from the boundary layer and rolled into the vortex at the line of lateral convergence on the test surface. Likewise, at the line of lateral divergence, the high momentum, low turbulent kinetic energy flow carried by the vortex impinges on the boundary layer, suppressing the turbulent energy level and the growth of the boundary layer.


1996 ◽  
Vol 326 ◽  
pp. 151-179 ◽  
Author(s):  
Junhui Liu ◽  
Ugo Piomelli ◽  
Philippe R. Spalart

The interaction between a zero-pressure-gradient turbulent boundary layer and a pair of strong, common-flow-down, streamwise vortices with a sizeable velocity deficit is studied by large-eddy simulation. The subgrid-scale stresses are modelled by a localized dynamic eddy-viscosity model. The results agree well with experimental data. The vortices drastically distort the boundary layer, and produce large spanwise variations of the skin friction. The Reynolds stresses are highly three-dimensional. High levels of kinetic energy are found both in the upwash region and in the vortex core. The two secondary shear stresses are significant in the vortex region, with magnitudes comparable to the primary one. Turbulent transport from the immediate upwash region is partly responsible for the high levels of turbulent kinetic energy in the vortex core; its effect on the primary stress 〈u′v′〉 is less significant. The mean velocity gradients play an important role in the generation of 〈u′v′〉 in all regions, while they are negligible in the generation of turbulent kinetic energy in the vortex core. The pressure-strain correlations are generally of opposite sign to the production terms except in the vortex core, where they have the same sign as the production term in the budget of 〈u′v′〉. The results highlight the limitations of the eddy-viscosity assumption (in a Reynolds-averaged context) for flows of this type, as well as the excessive diffusion predicted by typical turbulence models.


1995 ◽  
Vol 117 (4) ◽  
pp. 564-570
Author(s):  
M. J. Donnelly ◽  
O. K. Rediniotis ◽  
S. A. Ragab ◽  
D. P. Telionis

Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.


1999 ◽  
Vol 394 ◽  
pp. 303-337 ◽  
Author(s):  
A. VERNET ◽  
G. A. KOPP ◽  
J. A. FERRÉ ◽  
FRANCESC GIRALT

Simultaneous velocity and temperature measurements were made with rakes of sensors that sliced a slightly heated turbulent wake in the spanwise direction, at different lateral positions 150 diameters downstream of the cylinder. A pattern recognition analysis of hotter-to-colder transitions was performed on temperature data measured at the mean velocity half-width. The velocity data from the different ‘slices’ was then conditionally averaged based on the identified temperature events. This procedure yielded the topology of the average three-dimensional large-scale structure which was visualized with iso-surfaces of negative values of the second eigenvector of [S2+Ω2]. The results indicate that the average structure of the velocity fluctuations (using a triple decomposition of the velocity field) is found to be a shear-aligned ring-shaped vortex. This vortex ring has strong outward lateral velocities in its symmetry plane which are like Grant's mixing jets. The mixing jet region extends outside the ring-like vortex and is bounded by two foci separated in the spanwise direction and an upstream saddle point. The two foci correspond to what has been previously identified in the literature as the double rollers.The ring vortex extracts energy from the mean flow by stretching in the mixing jet region just upstream of the ring boundary. The production of the small-scale (incoherent) turbulence by the coherent field and one-component energy dissipation rate occur just downstream of the saddle point within the mixing jet region. Incoherent turbulence energy is extracted from the mean flow just outside the mixing jet region, but within the core of the structure. These processes are highly three-dimensional with a spanwise extent equal to the mean velocity half-width.When a double decomposition is used, the coherent structure is found to be a tube-shaped vortex with a spanwise extent of about 2.5l0. The double roller motions are integral to this vortex in spite of its shape. Spatial averages of the coherent velocity field indicate that the mixing jet region causes a deficit of mean streamwise momentum, while the region outside the foci of the double rollers has a relatively small excess of streamwise momentum.


Sign in / Sign up

Export Citation Format

Share Document