scholarly journals An instability mechanism for particulate pipe flow

2019 ◽  
Vol 870 ◽  
pp. 247-265
Author(s):  
Anthony Rouquier ◽  
Alban Pothérat ◽  
Chris C. T. Pringle

We present a linear stability analysis for a simple model of particle-laden pipe flow. The model consists of a continuum approximation for the particles, two-way coupled to the fluid velocity field via Stokes drag (Saffman, J. Fluid Mech., vol. 13 (01), 1962, pp. 120–128). We extend previous analysis in a channel (Klinkenberg et al., Phys. Fluids, vol. 23 (6), 2011, 064110) to allow for the initial distribution of particles to be inhomogeneous in a similar manner to Boronin (Fluid Dyn., vol. 47 (3), 2012, pp. 351–363) and in particular consider the effect of allowing the particles to be preferentially located around one radius in accordance with experimental observations. This simple modification of the problem is enough to alter the stability properties of the flow, and in particular can lead to a linear instability offering an alternative route to turbulence within this problem.

2011 ◽  
Vol 684 ◽  
pp. 284-315 ◽  
Author(s):  
Andrew G. Walton

AbstractThe high-Reynolds-number stability of unsteady pipe flow to axisymmetric disturbances is studied using asymptotic analysis. It is shown that as the disturbance amplitude is increased, nonlinear effects first become significant within the critical layer, which moves away from the pipe wall as a result. It is found that the flow stabilizes once the basic profile has become sufficiently fully developed. By tracing the nonlinear neutral curve back to earlier times, it is found that in addition to the wall mode, which arises from a classical upper branch linear stability analysis, there also exists a nonlinear neutral centre mode, governed primarily by inviscid dynamics. The centre mode problem is solved numerically and the results show the existence of a concentrated region of vorticity centred on or close to the pipe axis and propagating downstream at almost the maximum fluid velocity. The connection between this structure and the puffs and slugs of vorticity observed in experiments is discussed.


2003 ◽  
Vol 3 ◽  
pp. 246-254
Author(s):  
C.I. Mikhaylenko ◽  
S.F. Urmancheev

The behavior of a liquid flowing through a fixed bulk porous layer of a granular catalyst is considered. The effects of the nonuniformity of the fluid velocity field, which arise when the surface of the layer is curved, and the effect of the resulting inhomogeneity on the speed and nature of the course of chemical reactions are investigated by the methods of a computational experiment.


Author(s):  
A.P Willis ◽  
J Peixinho ◽  
R.R Kerswell ◽  
T Mullin

There have been many investigations of the stability of Hagen–Poiseuille flow in the 125 years since Osborne Reynolds' famous experiments on the transition to turbulence in a pipe, and yet the pipe problem remains the focus of attention of much research. Here, we discuss recent results from experimental and numerical investigations obtained in this new century. Progress has been made on three fundamental issues: the threshold amplitude of disturbances required to trigger a transition to turbulence from the laminar state; the threshold Reynolds number flow below which a disturbance decays from turbulence to the laminar state, with quantitative agreement between experimental and numerical results; and understanding the relevance of recently discovered families of unstable travelling wave solutions to transitional and turbulent pipe flow.


1993 ◽  
Vol 115 (3) ◽  
pp. 302-312 ◽  
Author(s):  
J. H. Terhune ◽  
K. Karim-Panahi

The free vibration of cylindrical shells filled with a compressible viscous fluid has been studied by numerous workers using the linearized Navier-Stokes equations, the fluid continuity equation, and Flu¨gge ’s equations of motion for thin shells. It happens that solutions can be obtained for which the interface conditions at the shell surface are satisfied. Formally, a characteristic equation for the system eigenvalues can be written down, and solutions are usually obtained numerically providing some insight into the physical mechanisms. In this paper, we modify the usual approach to this problem, use a more rigorous mathematical solution and limit the discussion to a single thin shell of infinite length and finite radius, totally filled with a viscous, compressible fluid. It is shown that separable solutions are obtained only in a particular gage, defined by the divergence of the fluid velocity vector potential, and the solutions are unique to that gage. The complex frequency dependence for the transverse component of the fluid velocity field is shown to be a result of surface interaction between the compressional and vortex motions in the fluid and that this motion is confined to the boundary layer near the surface. Numerical results are obtained for the first few wave modes of a large shell, which illustrate the general approach to the solution. The axial wave number is complex for wave propagation, the imaginary part being the spatial attenuation coefficient. The frequency is also complex, the imaginary part of which is the temporal damping coefficient. The wave phase velocity is related to the real part of the axial wave number and turns out to be independent of frequency, with numerical value lying between the sonic velocities in the fluid and the shell. The frequency dependencies of these parameters and fluid velocity field mode shapes are computed for a typical case and displayed in non-dimensional graphs.


Author(s):  
С.Ш. Рехвиашвили ◽  
М.М. Бухурова

AbstractA theoretical model describing the stability of a carbon nano-onion in the presence of a bulk catalytic graphite phase is constructed based on the continuum approximation of interatomic interaction potential and mechanics of deformed systems. It is shown that a carbon nano-onion becomes unstable when its radius exceeds double value of the radius of a fullerene C_60 molecule.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
A. A. Abdullah ◽  
K. A. Lindsay

The quality of the stability of the nonconvective zone of a salinity-gradient solar pond (SGSP) is investigated for an operating protocol in which the flushing procedure exactly compensates for evaporation losses from the solar pond and its associated evaporation pond. The mathematical model of the pond uses simplified, but accurate, constitutive expressions for the physical properties of aqueous sodium chloride. Also, realistic boundary conditions are used for the behaviors of the upper and lower convective zones (LCZs). The performance of a salinity-gradient solar pond is investigated in the context of the weather conditions at Makkah, Saudi Arabia, for several thickness of upper convective zone (UCZ) and operating temperature of the storage zone. Spectral collocation based on Chebyshev polynomials is used to assess the quality of the stability of the pond throughout the year in terms of the time scale for the restoration of disturbances in temperature, salinity, and fluid velocity underlying the critical eigenstate. The critical eigenvalue is found to be real and negative at all times of year indicating that the steady-state configuration of the pond is always stable, and suggesting that stationary instability would be the anticipated mechanism of instability. Annual profiles of surface temperature, salinity, and heat extraction are constructed for various combinations for the thickness of the upper convective zone and storage zone temperature.


2018 ◽  
Vol 853 ◽  
pp. 205-234 ◽  
Author(s):  
Giulio Facchini ◽  
Benjamin Favier ◽  
Patrice Le Gal ◽  
Meng Wang ◽  
Michael Le Bars

We present the stability analysis of a plane Couette flow which is stably stratified in the vertical direction orthogonal to the horizontal shear. Interest in such a flow comes from geophysical and astrophysical applications where background shear and vertical stable stratification commonly coexist. We perform the linear stability analysis of the flow in a domain which is periodic in the streamwise and vertical directions and confined in the cross-stream direction. The stability diagram is constructed as a function of the Reynolds number $Re$ and the Froude number $Fr$, which compares the importance of shear and stratification. We find that the flow becomes unstable when shear and stratification are of the same order (i.e. $Fr\sim 1$) and above a moderate value of the Reynolds number $Re\gtrsim 700$. The instability results from a wave resonance mechanism already known in the context of channel flows – for instance, unstratified plane Couette flow in the shallow-water approximation. The result is confirmed by fully nonlinear direct numerical simulations and, to the best of our knowledge, constitutes the first evidence of linear instability in a vertically stratified plane Couette flow. We also report the study of a laboratory flow generated by a transparent belt entrained by two vertical cylinders and immersed in a tank filled with salty water, linearly stratified in density. We observe the emergence of a robust spatio-temporal pattern close to the threshold values of $Fr$ and $Re$ indicated by linear analysis, and explore the accessible part of the stability diagram. With the support of numerical simulations we conclude that the observed pattern is a signature of the same instability predicted by the linear theory, although slightly modified due to streamwise confinement.


2021 ◽  
Author(s):  
Carolina S. B. Dutra ◽  
Elia Merzari

Abstract The study of coolant flow behavior in rod bundles is of relevance to the design of nuclear reactors. Although laminar and turbulent flows have been researched extensively, there are still gaps in understanding the process of laminar-turbulent transition. Such a process may involve the formation of a gap vortex street as the consequence of a related linear instability. In the present work, a parametric study was performed to analyze the spatially developing turbulence in a simplified geometry setting. The geometry includes two square arrayed rod bundle subchannels with periodic boundary conditions in the cross-section. The pitch-to-diameter ratios range from 1.05 to 1.20, and the length of the domain was selected to be 100 diameters. No-slip condition at the wall, and inlet-outlet configuration were employed. Then, to investigate the stability of the flow, the Reynolds number was varied from 250 to 3000. The simulations were carried out using the spectral-element code Nek5000, with a Direct Numerical Simulation (DNS) approach. Data were analyzed to examine this Spatio-temporal developing instability. In particular, we evaluate the location of onset and spatial growth of the instability.


Sign in / Sign up

Export Citation Format

Share Document