The cell-free layer in simulated microvascular networks

2019 ◽  
Vol 864 ◽  
pp. 768-806 ◽  
Author(s):  
Peter Balogh ◽  
Prosenjit Bagchi

In the microcirculation, a plasma layer forms near the vessel walls that is free of red blood cells (RBCs). This region, often termed as the cell-free layer (CFL), plays important haemorheological and biophysical roles, and has been the subject of extensive research. Many previous studies have considered the CFL development in single, isolated vessels that are straight tubes or channels, as well as in isolated bifurcations and mergers. In the body, blood vessels are typically winding and sequentially bifurcate into smaller vessels or merge to form larger vessels. Because of this geometric complexity, the CFL in vivo is three-dimensional (3D) and asymmetric, unlike in fully developed flow in straight tubes. The three-dimensionality of the CFL as it develops in a vascular network, and the underlying hydrodynamic mechanisms, are not well understood. Using a high-fidelity model of cellular-scale blood flow in microvascular networks with in vivo-like topologies, we present a detailed analysis of the fully 3D and asymmetric nature of the CFL in such networks. We show that the CFL significantly varies over different aspects of the networks. Along the vessel lengths, such variations are predominantly non-monotonic, which indicates that the CFL profiles do not simply become more symmetric over the length as they would in straight vessels. We show that vessel tortuosity causes the CFL to become more asymmetric along the length. We specifically identify a curvature-induced migration of the RBCs as the underlying mechanism of increased asymmetry in curved vessels. The vascular bifurcations and mergers are also seen to change the CFL profiles, and in the majority of them the CFL becomes more asymmetric. For most bifurcations, this is generally observed to occur such that the CFL downstream narrows on the side of the vessel nearest the upstream bifurcation, and widens on the other side. The 3D aspects of such behaviour are elucidated. For many bifurcations, a discrepancy exists between the CFL in the daughter vessels, which arises from a disproportionate partitioning between the flow rate and RBC flux. For most mergers, the downstream CFL narrows in the plane of the merger, but widens away from this plane. The dominant mechanism by which such changes occur is identified as the geometric focusing of the two merging streams. To our knowledge, this work provides the first simulation-based analysis of the 3D CFL structure in complex in vivo-like microvascular networks, including the hydrodynamic origins of the observed behaviour.

2020 ◽  
Vol 223 (21) ◽  
pp. jeb225250
Author(s):  
Aleš Mohorič ◽  
Janko Božič ◽  
Polona Mrak ◽  
Kaja Tušar ◽  
Chenyun Lin ◽  
...  

ABSTRACTThree-dimensional (3D) magnetic resonance microscopy (MRM) is a modality of magnetic resonance imaging (MRI) optimized for the best resolution. Metamorphosis of the Carniolan worker honey bee (Apis mellifera carnica) was studied in vivo under controlled temperature and humidity conditions from sealed larvae until the emergence of an adult. The 3D images were analyzed by volume rendering and segmentation, enabling the analysis of the body, tracheal system and gastrointestinal tract through the time course of volume changes. Fat content sensitivity enabled the analysis of flight muscles transformation during the metamorphosis by the signal histogram and gray level co-occurrence matrix (GLCM). Although the transformation during metamorphosis is well known, MRM enables an alternative insight to this process, i.e. 3D in vivo, which has relatively high spatial and temporal resolutions. The developed methodology can easily be adapted for studying the metamorphosis of other insects or any other incremental biological process on a similar spatial and temporal scale.


2001 ◽  
Vol 711 ◽  
Author(s):  
Anil Thapa ◽  
Thomas J. Webster ◽  
Karen M. Haberstroh

ABSTRACTConventionally, studies investigating the design of synthetic bladder wall substitutes have involved polymers with micro-dimensional structures. Since the body is made up of nano-structured components (e.g., extracellular matrix proteins), our focus has been in the use of nano-structured polymers in order to design a three-dimensional synthetic bladder construct that mimics bladder tissue in vivo. In order to complete this task, we fabricated novel, nano-structured, biodegradable materials to serve as substrates for bladder tissue constructs and tested the cytocompatibility properties of these biomaterials in vitro. The results from our in vitro work to date have provided the first evidence that cellular responses (such as adhesion and proliferation) of bladder smooth muscle cells are enhanced as poly (lactic-co-glycolic acid) (PLGA) surface feature dimensions are reduced into the nanometer range.


2016 ◽  
Vol 311 (2) ◽  
pp. H487-H497 ◽  
Author(s):  
Yan Cheng Ng ◽  
Bumseok Namgung ◽  
Sim Leng Tien ◽  
Hwa Liang Leo ◽  
Sangho Kim

Heterogeneous distribution of red blood cells (RBCs) in downstream vessels of arteriolar bifurcations can be promoted by an asymmetric formation of cell-free layer (CFL) in upstream vessels. Consequently, the CFL widths in subsequent downstream vessels become an important determinant for tissue oxygenation (O2) and vascular tone change by varying nitric oxide (NO) availability. To extend our previous understanding on the formation of CFL in arteriolar bifurcations, this study investigated the formation of CFL widths from 2 to 6 vessel-diameter (2 D-6 D) downstream of arteriolar bifurcations in the rat cremaster muscle ( D = 51.5 ± 1.3 μm). As the CFL widths are highly influenced by RBC aggregation, the degree of aggregation was adjusted to simulate levels seen during physiological and pathological states. Our in vivo experimental results showed that the asymmetry of CFL widths persists along downstream vessels up to 6 D from the bifurcating point. Moreover, elevated levels of RBC aggregation appeared to retard the recovery of CFL width symmetry. The required length of complete symmetry recovery was estimated to be greater than 11 D under reduced flow conditions, which is relatively longer than interbifurcation distances of arterioles for vessel diameter of ∼50 μm. In addition, our numerical prediction showed that the persistent asymmetry of CFL widths could potentially result in a heterogeneous vasoactivity over the entire arteriolar network in such abnormal flow conditions.


2021 ◽  
Vol 288 (1957) ◽  
pp. 20211091
Author(s):  
Ariel L. Camp

Tetrapods use their neck to move the head three-dimensionally, relative to the body and limbs. Fish lack this anatomical neck, yet during feeding many species elevate (dorsally rotate) the head relative to the body. Cranial elevation is hypothesized to result from the craniovertebral and cranial-most intervertebral joints acting as a neck, by dorsally rotating (extending). However, this has never been tested due to the difficulty of visualizing and measuring vertebral motion in vivo . I used X-ray reconstruction of moving morphology to measure three-dimensional vertebral kinematics in rainbow trout ( Oncorhynchus mykiss ) and Commerson's frogfish ( Antennarius commerson ) during feeding. Despite dramatically different morphologies, in both species dorsoventral rotations extended far beyond the craniovertebral and cranial intervertebral joints. Trout combine small (most less than 3°) dorsal rotations over up to a third of their intervertebral joints to elevate the neurocranium. Frogfish use extremely large (often 20–30°) rotations of the craniovertebral and first intervertebral joint, but smaller rotations occurred across two-thirds of the vertebral column during cranial elevation. Unlike tetrapods, fish rotate large regions of the vertebral column to rotate the head. This suggests both cranial and more caudal vertebrae should be considered to understand how non-tetrapods control motion at the head–body interface.


2021 ◽  
Vol 22 (2) ◽  
pp. 830
Author(s):  
Georgia Pennarossa ◽  
Sharon Arcuri ◽  
Teresina De Iorio ◽  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini

Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.


Author(s):  
Yizhi Jiang ◽  
Yaqiong Tang ◽  
Christopher Hoover ◽  
Yuji Kondo ◽  
Dongping Huang ◽  
...  

AbstractThe liver has recently been identified as a major organ for destruction of desialylated platelets. However, the underlying mechanism remains unclear. Kupffer cells, which are professional phagocytic cells in the liver, comprise the largest population of resident tissue macrophages in the body. Kupffer cells express a C-type lectin receptor, CLEC4F, that recognizes desialylated glycans with an unclear in vivo role in mediating platelet destruction. In this study, we generated a CLEC4F-deficient mouse model (Clec4f−/−) and found that CLEC4F was specifically expressed by Kupffer cells. Using the Clec4f−/− mice and a newly generated platelet-specific reporter mouse line, we revealed a critical role for CLEC4F on Kupffer cells in mediating destruction of desialylated platelets in the liver in vivo. Platelet clearance experiments and ultrastructural analysis revealed that desialylated platelets were phagocytized predominantly by Kupffer cells in a CLEC4F-dependent manner in mice. Collectively, these findings identify CLEC4F as a Kupffer cell receptor important for the destruction of desialylated platelets induced by bacteria-derived neuraminidases, which provide new insights into the pathogenesis of thrombocytopenia in disease conditions such as sepsis.


Author(s):  
Donghyun Kim ◽  
Yeo-Jun Yoon ◽  
Dojin Choi ◽  
Jisun Kim ◽  
Jae-Yol Lim

Lumen formation of salivary glands has been investigated using in vivo or ex vivo rudiment culture models. In this study, we used a three-dimensional (3D) salivary gland organoid culture system and demonstrated that lumen formation could be recapitulated in mouse SMG organoids. In our organoid culture system, lumen formation was induced by vasoactive intestinal peptide and accelerated by treatment with RA. Furthermore, lumen formation was observed in branching duct-like structure when cultured in combination of fibroblast growth factors (FGF) in the presence of retinoic acid (RA). We suggest RA signaling-mediated regulation of VIPR1 and KRT7 as the underlying mechanism for lumen formation, rather than apoptosis in the organoid culture system. Collectively, our results support a fundamental role for RA in lumen formation and demonstrate the feasibility of 3D organoid culture as a tool for studying salivary gland morphogenesis.


2021 ◽  
Vol 14 (3) ◽  
pp. 159-164
Author(s):  
Leonardo Leonardi ◽  
◽  
Roberto Marsili ◽  
Enrico Bellezza ◽  
Giovanni Angeli ◽  
...  

Additive manufacturing (AM) is the process of joining materials to create layer-by-layer three-dimensional objects using a 3D printer from a digital model. The great advantage of Additive Manufacturing is to allow a freer design than traditional processes. The development of additive manufacturing processes has permitted to optimize the production of the customized product through the modeling of the geometry and the knowledge of the morphometric parameters of the body structures. 3D printing has revolutionized the field of Regenerative Medicine because, starting from computerized tomography (CT) images and using traditional materials such as plastic and metals, it can provide customized prostheses for each patient, which adapt perfectly to the needs of the subject and act as structures support. 3D printing allows you to print three-dimensional porous scaffolds with a precise shape and chemical composition suitable for medical and veterinary use. Some of these scaffolds are biodegradable and appear to be ideal for bone tissue engineering. In fact, they are able to simulate extracellular matrix properties that allow mechanical support, favoring mechanical interactions and providing a model for cellular attachment and in vivo stimulation of bone tissue formation.


Author(s):  
Alicia R. Jackson ◽  
Chun-Yuh Huang ◽  
Wei Yong Gu

Degeneration of the intervertebral disc (IVD) of the spine is a common condition which has been implicated as a factor leading to low back pain. Poor nutritional supply is believed to be a primary contributor to IVD degeneration. Because the disc is the largest avascular structure in the body, cells must rely on transport of important nutrients, such as glucose and oxygen, from the surrounding vasculature in order to maintain cell viability in the disc tissue. Due to difficulty in obtaining data in vivo, theoretical modeling is a useful tool to supplement experimental results and predict in vivo conditions.


2010 ◽  
Vol 15 (5) ◽  
pp. 050501 ◽  
Author(s):  
Yeongri Jung ◽  
Zhongwei Zhi ◽  
Ruikang K. Wang

Sign in / Sign up

Export Citation Format

Share Document