scholarly journals A neck-like vertebral motion in fish

2021 ◽  
Vol 288 (1957) ◽  
pp. 20211091
Author(s):  
Ariel L. Camp

Tetrapods use their neck to move the head three-dimensionally, relative to the body and limbs. Fish lack this anatomical neck, yet during feeding many species elevate (dorsally rotate) the head relative to the body. Cranial elevation is hypothesized to result from the craniovertebral and cranial-most intervertebral joints acting as a neck, by dorsally rotating (extending). However, this has never been tested due to the difficulty of visualizing and measuring vertebral motion in vivo . I used X-ray reconstruction of moving morphology to measure three-dimensional vertebral kinematics in rainbow trout ( Oncorhynchus mykiss ) and Commerson's frogfish ( Antennarius commerson ) during feeding. Despite dramatically different morphologies, in both species dorsoventral rotations extended far beyond the craniovertebral and cranial intervertebral joints. Trout combine small (most less than 3°) dorsal rotations over up to a third of their intervertebral joints to elevate the neurocranium. Frogfish use extremely large (often 20–30°) rotations of the craniovertebral and first intervertebral joint, but smaller rotations occurred across two-thirds of the vertebral column during cranial elevation. Unlike tetrapods, fish rotate large regions of the vertebral column to rotate the head. This suggests both cranial and more caudal vertebrae should be considered to understand how non-tetrapods control motion at the head–body interface.

1998 ◽  
Vol 201 (10) ◽  
pp. 1659-1671 ◽  
Author(s):  
L Hammond ◽  
J D Altringham ◽  
C S Wardle

Strain and activity patterns were determined during slow steady swimming (tailbeat frequency 1.5-2.5 Hz) at three locations on the body in the slow myotomal muscle of rainbow trout Oncorhynchus mykiss using sonomicrometry and electromyography. Strain was independent of tailbeat frequency over the range studied and increased significantly from +/-3.3 % l0 at 0.35BL to +/-6 % at 0.65BL, where l0 is muscle resting length and BL is total body length. Muscle activation occurred significantly later in the strain cycle at 0.35BL (phase shift 59 degrees) than at 0.65BL (30 degrees), and the duration of activity was significantly longer (211 degrees at 0.35BL and 181 degrees at 0.65BL). These results differ from those of previous studies. The results have been used to simulate in vivo activity in isolated muscle preparations using the work loop technique. Preparations from all three locations generated net positive power under in vivo conditions, but the negative power component increased from head to tail. Both kinematically, and in the way its muscle functions to generate hydrodynamic thrust, the rainbow trout appears to be intermediate between anguilliform swimmers such as the eel, which generate thrust along their entire body length, and carangiform fish (e.g. saithe Pollachius virens), which generate thrust primarily at the tail blade.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (2) ◽  
pp. 305-308
Author(s):  
Derek Harwood-Nash ◽  
Herman Grossman ◽  
Alvin Felman ◽  
John Kirkpatrick ◽  
Leonard Swischuk

Computerized tomography (CT), a technique conceptualized by Oldendorf in 19611 and developed by Hounsfield2 of EMI-Tronics Inc. (EMI) Central Research Laboratories, has proven to be a successful innovation in neuroradiology. Reviews by Ambrose3 in England and by Baker et al.4 and by New et al.5 in the United States have clearly demonstrated the value of this new modality in neuroradiological diagnosis. In 1975 Houser et al.6 and Harwood-Nash et al.7 provided the initial clinical and radiological data about CT in infants and children. More recently this technique has been extended to the study of tissues and organs in the body other than those in the head. This has been accomplished by modification of the original machine into a whole-body CT system. Early reviews by Ledley et al.8 and by Alfidi et al.9 suggest a significant potential for diagnosis of lesions in the abdomen, pelvis, and thorax. The advantages of CT are that it is less invasive than standard special diagnostic radiological procedures and that for the first time it provides in vivo information regarding the content and the characteristics of tissue composing organs and masses. DESCRIPTION OF EQUIPMENT In conventional radiography an image is made on radiographic film by an attenuated X-ray beam. In passing through a core of tissue, each ray of the beam is attenuated as it is absorbed and scattered by the tissue in its path. The intensity of the transmitted ray depends on the sum total of X-ray attenuation by all the different soft tissues in its path.


2007 ◽  
Vol 330-332 ◽  
pp. 503-506
Author(s):  
Xiao Wei Fu ◽  
Jie Huang ◽  
E.S. Thian ◽  
Serena Best ◽  
William Bonfield

A Bioglass® reinforced polyethylene (Bioglass®/polyethylene) composite has been prepared, which combines the high bioactivity of Bioglass® and the toughness of polyethylene. The spatial distribution of Bioglass® particles within the composite is important for the performance of composites in-vivo. Recent developments in X-ray microtomography (XμT) have made it possible to visualize internal and microstructural details with different X-ray absorbencies, nondestructively, and to acquire 3D information at high spatial resolution. In this study, the volume fraction and 3D spatial distribution of Bioglass® particles has been acquired quantitatively by XμT. The information obtained provides a foundation for understanding the mechanical and bioactive properties of the Bioglass®/polyethylene composites.


1999 ◽  
Vol 163 (1) ◽  
pp. 87-97 ◽  
Author(s):  
J Chyb ◽  
T Mikolajczyk ◽  
B Breton

In order to determine the factors of ovarian origin which can modulate the postovulatory secretion of the FSH-like gonadotropin (GtH I) and the LH-like gonadotropin (GtH II), freshly ovulated female rainbow trout were divided into two groups. In the first group the fish were stripped in order to eliminate the eggs and ovarian fluid from the body cavity, while in the second group the eggs were kept in the body cavity. Subsequently, fish from both groups were implanted with testosterone (10 mg/kg), 17beta-estradiol (10 mg/kg) or 17,20beta-ddihydroxy-4-regnen-3-one (17,20betaP) (1 mg/kg) or injected every 2 days with desteroidized ovarian fluid (1.5 ml/kg). The secretion of GtH I dramatically increased in stripped fish, reaching its maximum levels 2 weeks after ovulation. The preservation of eggs in the body cavity led to the suppression of this increase. The profiles of GtH II secretion were opposite to those encountered for GtH I because the increase of GtH II was observed only in unstripped fish. The administration of steroids showed that testosterone is able to inhibit GtH I release and stimulate that of GtH II in stripped fish, having no effect on the release of these gonadotropins in non-stripped animals. 17beta-Estradiol failed to modify GtH I secretion, however it decreased the release of GtH II in fish containing retained eggs in the body cavity. 17,20betaP had a delayed stimulating influence on GtH I release in unstripped fish. Finally, multiple injections of desteroidized ovarian fluid into stripped fish led to a significant decrease of GtH I release and to an increase of GtH II secretion. This study demonstrates that factors, which are present in ovarian fluid, modulate the post-ovulatory secretion of both gonadotropins--their net action is negative on GtH I and positive on GtH II. Among the steroids, testosterone is of major importance, being able to inhibit GtH I release and to stimulate that of GtH II. We also show that non-steroidal factors present in the ovarian fluid can influence the release of both gonadotropins, which indirectly supports the previous findings about the existence of inhibin/activin-like factors in fish.


2018 ◽  
Vol 14 (7) ◽  
pp. 20180063 ◽  
Author(s):  
Andreas Ekström ◽  
Michael Axelsson ◽  
Albin Gräns ◽  
Jeroen Brijs ◽  
Erik Sandblom

Cardiac oxygenation is achieved via both coronary arterial and luminal venous oxygen supply routes in many fish species. However, the relative importance of these supplies for cardiac and aerobic metabolic performance is not fully understood. Here, we investigated how coronary artery ligation in rainbow trout ( Oncorhynchus mykiss ), implanted with heart rate loggers, affected cardiorespiratory performance in vivo . While coronary ligation significantly elevated resting heart rate, the standard metabolic rate was unchanged compared to sham-treated controls. However, coronary ligation reduced the maximum metabolic rate while heart rate remained unchanged following enforced exercise. Thus, coronary ligation reduced metabolic and heart rate scopes by 29% and 74%, respectively. Our findings highlight the importance of coronary oxygen supply for overall cardiorespiratory performance in salmonid fish, and suggest that pathological conditions that impair coronary flow (e.g. coronary arteriosclerosis) constrain the ability of fish to cope with metabolically demanding challenges such as spawning migrations and environmental warming.


1979 ◽  
Vol 23 ◽  
pp. 185-191 ◽  
Author(s):  
L. Ahlgren ◽  
T. Grönberg ◽  
S. Mattsson

Occupational exposure to lead is common in many industrial applications and hence it is of considerable medical interest to control the body-burden of lead in living man. More than 90 % of the lead in the body is concentrated in bone and hence in vivo measurements of the lead in the skeleton should give the most satisfactory way for estimating the body-burden. The routine method used today for checking on lead contamination is that of measurements on blood samples. However, since the concentration of lead in the blood is a sensitive function of the actual exposure conditions, this method provides only a poor indication of the total body-burden and the integrated lead exposure.


Sign in / Sign up

Export Citation Format

Share Document